Cave Biofilms and Their Potential for Novel Antibiotic Discovery

Part of the SpringerBriefs in Microbiology book series (volume 1)


Caves often harbor extensive colorful patches that contribute to their attractiveness for cavers, such as those that can be seen in Fig. 2.1. These colorful features are natural biofilms known as bacterial mats.


Acinetobacter Baumannii Extreme Habitat Microbial Biodiversity Natural Product Discovery Antibiotic Discovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AGISAR (2009) Critically important antimicrobials for human medicine, 2nd rev report. World Health Organization, Copenhagen, DenmarkGoogle Scholar
  2. Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705PubMedCrossRefGoogle Scholar
  3. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies JD, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259PubMedCrossRefGoogle Scholar
  4. Alvan G, Edlund C, Heddini A (2011) The global need for effective antibiotics—a summary of plenary presentations. Drug Resist Updates 14:70–76CrossRefGoogle Scholar
  5. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  6. Boston PJ, Spilde MN, Northup DE, Melim LA, Soroka DS, Kleina LG, Lavoie KH, Hose LD, Mallory LM, Dahm CN, Crossey LJ, Schelble RT (2001) Cave biosignature suites: microbes, minerals, and mars. Astrobiology 1:25–54PubMedCrossRefGoogle Scholar
  7. Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70:27–32PubMedCrossRefGoogle Scholar
  8. Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240CrossRefGoogle Scholar
  9. Chang C-C, Chen WC, Ho T-F, Wu H-S, Wei Y-H (2011) Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111:501–511PubMedCrossRefGoogle Scholar
  10. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499PubMedCrossRefGoogle Scholar
  11. Davies J (2009) Darwin and microbiomes. EMBO Rep 10:805PubMedCrossRefGoogle Scholar
  12. Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10PubMedCrossRefGoogle Scholar
  13. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433PubMedCrossRefGoogle Scholar
  14. ECDC/EMEA (2009) The bacterial challenge: time to react. A call to narrow the gap between multidrug-resistant bacteria in the EU and the development of new antibacterial agents. Technical Report. European Centre for Disease Prevention and Control, European Medicines Agency, European UnionGoogle Scholar
  15. Fleming A (1945) Penicillin: Nobel lecture. Nobel Institute, OsloGoogle Scholar
  16. Ghigo JM (2003) Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res Microbiol 154:1–8PubMedCrossRefGoogle Scholar
  17. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  18. Harvey A (2000) Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today 5:294–300PubMedCrossRefGoogle Scholar
  19. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555PubMedCrossRefGoogle Scholar
  20. IDSA (2004) Bad bugs, no drugs: as antibiotic discovery stagnates … a public health crisis brews. Infectious Diseases Society of America, Alexandria, VAGoogle Scholar
  21. IDSA (2010) The 10  ×  20 Initiative: Pursuing a Global Commitment to Develop 10 New Antibacterial Drugs by 2020. Clin Infect Dis 50:1081–1083CrossRefGoogle Scholar
  22. Knight V, Sanglier J-J, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458PubMedCrossRefGoogle Scholar
  23. Koehn FE (2008) High impact technologies for natural products screening. Prog Drug Res 65:177–210Google Scholar
  24. Leveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58:592–598CrossRefGoogle Scholar
  25. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538PubMedCrossRefGoogle Scholar
  26. Livermore DM (2009) Has the era of untreatable infections arrived? J Antimicrob Chemother 64(S1):i29–i36Google Scholar
  27. Mearns-Spragg A, Bregu M, Boyd KG, Burgess JG (1998) Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol 27:142–146PubMedCrossRefGoogle Scholar
  28. Menne B (1999) Myxobacteria in cave sediments of the French Jura Mountains. Microbiol Res 154:1–8CrossRefGoogle Scholar
  29. Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168PubMedCrossRefGoogle Scholar
  30. Moran LF, Aronsson B, Manz C, Gyssens IC, So AD, Monnet ID, Cars O (2011) Critical shortage of new antibiotics in development against multidrug-resistant bacteria—time to react is now. Drug Resist Updates 14:118–124CrossRefGoogle Scholar
  31. Nicolaus B, Karambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158PubMedCrossRefGoogle Scholar
  32. Northup DE, Melim LA, Spilde MN, Hathaway JJM, Garcia MG, Moya M, Stone FD, Boston PJ, Dapkevicius MLNE, Riquelme C (2011) Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11:601–618PubMedCrossRefGoogle Scholar
  33. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  34. Plath M, Tobler M, Riesch R, García de Léon FJ, Giere O, Schlupp I (2007) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996PubMedCrossRefGoogle Scholar
  35. Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736PubMedCrossRefGoogle Scholar
  36. Roemer T, Davies J, Giaver G, Nislow C (2012) Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56CrossRefGoogle Scholar
  37. Ruimy R, Barbier F, Lebeaux D, Ruppé E, Andremont A (2012) Nasal carriage of methicillin-resistant coagulase-negative staphylococci: a reservoir of mecA gene for Staphylococcus aureus. In: Morand S, Beaudeau F, Carabet J (eds) New frontiers of molecular epidemiology of infectious diseases. Springer, Berlin, pp 219–238CrossRefGoogle Scholar
  38. Seufferheld M, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874PubMedCrossRefGoogle Scholar
  39. Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109PubMedCrossRefGoogle Scholar
  40. Singh OV, Gabani P (2011) Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol 110:851–861Google Scholar
  41. Singh G, Bhalla A, Ralhan PK (2011) Extremophiles and extremozymes: importance in current biotechnology. ELBA Bioflux 3:46–54Google Scholar
  42. Wright GD (2011) Molecular mechanisms of antibiotic resistance. Chem Commun 47:4055–4061CrossRefGoogle Scholar
  43. Yan L, Boyd KG, Adams DR, Burgess JG (2003) Biofilm-specific cross-species induction of antimicrobial compounds in Bacilli. Appl Environ Microbiol 69:3719–3727PubMedCrossRefGoogle Scholar
  44. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedCrossRefGoogle Scholar
  45. Zengler K, Paradkar A, Keller M (2005) New methods to access microbial diversity for small molecule discovery. In: Zhang L, Demain AL (eds) Natural products. Drug discovery and therapeutic medicine. Humana, Totowa, NJ, pp 275–292Google Scholar
  46. Zhang L (2005) Integrated approaches for discovering novel drugs from microbial natural products. In: Zhang L, Demain AL (eds) Natural products. Drug discovery and therapeutic medicine. Humana, Totowa, NJ, pp 33–55Google Scholar

Copyright information

© Naowarat Cheeptham 2013

Authors and Affiliations

  1. 1.CITA-A, Department of Agricultural SciencesUniversity of the AzoresAngra do HeroísmoPortugal

Personalised recommendations