Skip to main content

Comparative Aspects of Cardiac Adaptation

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

Abstract

Transition from water to land, necessity of thermoregulation, and physical activity essential for survival of individual species represent serious changes in requirements imposed on cardiac function during phylogenetic development. As a result, the heart size in different species of vertebrates, expressed as a ratio of heart weight to body weight, varies considerably. The maximum acceleration of the heart growth during phylogeny occurs when the metabolic activity of animal tissues has substantially increased, i.e., during transition from poikilothermy to homeothermy. Phylogenetic differences in cardiac size, performance, and energy demand are reflected in the construction of an oxygen pathway from blood to mitochondria. The heart of cold-blooded animals is either entirely spongious, supplied by diffusion from ventricular cavity, or the inner avascular layer is covered by an outer compact layer with vascular supply. The compact heart of adult homeotherms is supplied by capillaries from coronary vessels. It was found that the thickness of the compact layer in poikilotherms increases with increasing heart and body weight, suggesting that the compact layer is necessary for the maintenance of the higher blood pressure in the larger hearts. The structural differences between spongious and compact musculature are accompanied by significant metabolic differences: the spongy myocardium is better equipped for aerobic metabolism than the compact tissue. It is obvious that the responses to different types of increased work load in individual species of lower vertebrates differ according to the structural, functional, and metabolic properties of their cardiac muscle. They vary from the isolated enlargement of the individual myocardial layers, i.e., spongious and compact musculature, to the enlargement of the whole heart, predominantly by combination of hypertrophy, and hyperplasia of muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hesse R (1921) Das Herzgewicht der Wirbeltiere Zool Jahrb Abt Allg Zool Physiol 38:243

    Google Scholar 

  2. Clark AJ (1927) Comparative physiology of the heart. Cambridge University Press, Cambridge

    Google Scholar 

  3. Poupa O, Ostadal B (1969) Experimental cardiomegalies and “cardiomegalies”—in free-living animals. Ann NY Acad Sci 156:445–468

    Article  PubMed  CAS  Google Scholar 

  4. Ostadal B, Rychter Z, Poupa O (1970) Comparative aspects of the development of the terminal vascular bed in the myocardium. Physiol bohemoslov 19:1–7

    PubMed  CAS  Google Scholar 

  5. Burggren WW (1988) Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny? Experientia 44:919–930

    Article  PubMed  CAS  Google Scholar 

  6. Burggren WW, Wartburton SJ (1994) Patterns of form and function in developing hearts: contributions from non-mammalian vertebrates. Cardioscience 5:183–191

    PubMed  CAS  Google Scholar 

  7. Else PL, Hulbert AJ (1983) A comparative study of the metabolic capacity of hearts from reptiles and mammals. Comp Biochem Physiol 76:553–557

    Article  CAS  Google Scholar 

  8. Poupa O (1993) Heart story: a view to the past. In: Ostadal B, Dhalla NS (eds) Heart function in health and disease. Kluwer Academic Publishers, Boston, pp 3–22

    Chapter  Google Scholar 

  9. Poupa O, Rakusan K, Ostadal B (1970) The effect of physical activity upon the heart of vertebrates. Med Sport 4:202–233

    Google Scholar 

  10. Grant RT, Regnier M (1926) The comparative anatomy of the cardiac coronary vessels. Heart 13:283

    Google Scholar 

  11. Ostadal B, Schiebler TH, Rychter Z (1975) Relations between development of the capillary wall and myoarchitecture of the rat heart. In: Cristofalo VJ, Holeckova E (eds) Cell Impairment in aging and development. Adv Exp Med Biol 53:375–388

    Google Scholar 

  12. Ostadal B, Schiebler TH (1971) Über die terminale strombahn in fischherzen. Z Anat Entwickl Gesch 34:101–110

    Article  Google Scholar 

  13. Ostadal B, Schiebler TH (1971) Die terminale strombahn in herzen der schildkröte (Testudo Hermanni). Z Anat Entwickl Gesch 134:111–116

    Article  CAS  Google Scholar 

  14. Davie PS, Farell AP (1991) The coronary and luminal circulations of the myocardium of fishes. Can J Zool 69:1993–2001

    Article  Google Scholar 

  15. Kohmoto T, Argenziano M, Yamamoto N et al (1997) Assesment of transmyocardial perfusion in alligator hearts. Circulation 95:1585–1591

    Article  PubMed  CAS  Google Scholar 

  16. Brainerd E (1997) Efficient fish not faint-hearted. Nature 389:229–230

    Article  PubMed  CAS  Google Scholar 

  17. Horvath KA, Mannting F, Cummings N et al (1996) Transmyocardial laser revascularization: operative techniques and clinical results at two years. J Thorac Cardiovasc Surg 111:1047–1053

    Article  PubMed  CAS  Google Scholar 

  18. Santer RM (1985) Morphology and innervation of the fish heart. Adv Anat Embryol Cell Biol 89:1–102

    Article  PubMed  CAS  Google Scholar 

  19. Brady AJ, Dubkin CH (1964) Coronary circulation in the turtle ventricle. Comp Biochem Physiol 13:119–128

    Article  PubMed  CAS  Google Scholar 

  20. Bass A, Ostadal B, Pelouch V et al (1973) Differences in weight parameters, myosin ATPase activity and the enzyme pattern of energy supplying metabolism between the compact and spongious cardiac musculature of carp (Cyprinus carpio) and turtle (Testudo Horsfieldi). Pflügers Arch 343:65–77

    Article  PubMed  CAS  Google Scholar 

  21. Santer RM, Greer Walker M (1980) Morphological studies on the ventricle of teleost and elasmobranch hearts. J Zool (Lond) 190:259–272

    Article  Google Scholar 

  22. Santer RM, Greer Walker M, Emerson L et al (1983) On the morphology of the heart ventricle in marine teleost fish (Teleostei). Comp Biochem Physiol 76:453–459

    Article  Google Scholar 

  23. Sanchez-Quintana D, Hurle JM (1987) Ventricular myocardial architecture in marine fishes. Anat Rec 217:263–273

    Article  PubMed  CAS  Google Scholar 

  24. Poupa O, Gesser H, Jonsson S et al (1974) Coronary-supplied compact shell of ventricular myocardium in salmonids: growth and enzyme pattern. Comp Biochem Physiol 48:85–95

    Article  CAS  Google Scholar 

  25. Agnisola C, Tota B (1994) Structure and function of the fish cardiac ventricle: flexibility and limitations. Cardioscience 5:145–153

    PubMed  CAS  Google Scholar 

  26. Tota B, Gattuso A (1996) Heart ventricle pump in teleost and elasmobranchs: a morphodynamic approach. J Exp Zool 275:162–171

    Article  Google Scholar 

  27. Ostadal B, Pelouch V, Ostadalova I et al (1995) Structural and biochemical remodeling in catecholamine-induced cardiomyopathy: comparative and ontogenetic aspects. Mol Cell Biochem 147:83–88

    Article  PubMed  CAS  Google Scholar 

  28. Rakusan K, Tietzova H, Turek Z et al (1965) Cardiomegaly after repeated application of isoprenaline in the rat. Physiol Bohemoslov 14:456–459

    PubMed  CAS  Google Scholar 

  29. Clark RJ, Rodnick KJ (1998) Morphometric and biochemical characteristics of ventricular hypertrophy in male rainbow trout (Oncorhynchus mykiss). J Exp Biol 201:1541–1552

    PubMed  CAS  Google Scholar 

  30. Farell AP, Hammons AM, Graham MS et al (1988) Cardiac growth in rainbow trout. Salmo gairdneri. Can J Zool 66:2368–2373

    Article  Google Scholar 

  31. Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis and low temperature. Physiol Rev 74:221–258

    PubMed  CAS  Google Scholar 

  32. Hulbert AJ, Else PL (1989) Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am J Physiol 256:R63–R69

    PubMed  CAS  Google Scholar 

  33. Christensen M, Hartmund T, Gesser H (1994) Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. J Comp Physiol B 164:118–123

    Article  PubMed  CAS  Google Scholar 

  34. Poupa O (1994) Cardiac muscle and its blood supply: palaeophysiological notes. Cell Mol Biol Res 40:153–165

    PubMed  CAS  Google Scholar 

  35. Sidell BD (1983) Cardiac metabolism in the myxinidae: physiological and phylogenetic considerations. Comp Biochem Physiol 76:495–505

    Article  CAS  Google Scholar 

  36. Johansen K (1986) The world as a laboratory-physiological insight from nature′s experiments. In: Proceeding 30th IUPS Congress, Vancouver, p 451

    Google Scholar 

  37. Tota B (1983) Vascular and metabolic zonantion in the ventricular myocardium of mammals and fishes. Comp Biochem Physiol 76A:423–438

    Article  Google Scholar 

  38. Drnkova J, Novakova O, Pelouch V et al (1985) Phospholipid content in the compact and spongious musculature of the carp heart (Cyprinus carpio). Physiol Bohemoslov 34:381–384

    PubMed  CAS  Google Scholar 

  39. Maresca B, Modigh M, Servillo L et al (1976) Different temperature dependencies of oxidative phosphorylation in the inner and outer layers of tuna heart ventricle. J Comp Physiol Psychol 105:167–172

    CAS  Google Scholar 

  40. Greco G, Martino G, Tota B (1982) Further characterization of two mitochondrial populations in tuna heart ventricle. Comp Biochem Physiol 71B:71–75

    CAS  Google Scholar 

  41. Ostadal B, Pelouch V, Bass A et al (2000) Adaptation of the poikilothermic heart to catecholamine-induced overload. In: Takeda N, Nagano M, Dhalla NS (eds) The hypertrophied heart. Kluwer Academic Publishers, Boston, pp 217–226

    Chapter  Google Scholar 

  42. Rome LC, Loughna PT, Goldspink G (1985) Temperature acclimation: improved sustained swimming performance in carp at low temeperature. Science 228:194–196

    Article  PubMed  CAS  Google Scholar 

  43. Driedzic WR, Bailey JR, Sephton DH (1996) Cardiac adaptation to low temperature in non-polar teleost fish. J Exp Zool 275:186–195

    Article  Google Scholar 

  44. Tota B, Cerra MC, Mazza R et al (1997) The heart of the antartic icefish as paradigm of cold adaptation. J Therm Biol 22:409–417

    Article  Google Scholar 

  45. Tota B, Agnisola C, Schioppa M et al (1991) Structural and mechanical characteristics of the heart of the icefish chionodraco hamatus (Lönberg). In: Di Prisco G, Maresca B, Tota B (eds) Biology of antarctic fish. Springer, Berlin, pp 204–219

    Chapter  Google Scholar 

  46. Johnston IA (1989) Antarctic fish muscle-structure, function and physiology. Antarctic Sci 1:97–108

    Article  Google Scholar 

  47. Harrison P, Zummo G, Farina F et al (1991) Gross anatomy, myoarchitecture, and ultrastructure of the heart ventricle in the haemoglobinless icefish Chaenocephalus aceratus. Can J Zool 69:1339–1347

    Article  Google Scholar 

  48. Tiitu V, Vornanen M (2001) Cold adaptation suppresses the contractility of the both atrial and ventricular muscle of the crucian carp heart. J Fish Biol 59:141–156

    Article  CAS  Google Scholar 

  49. Walsh PJ, Foster GD, Moon TW (1983) The effects of temperature on metabolism of the american eel anguilla rostrata (leSueur): compensation in the summer and torper in the winter. Physiol Zool 56:532–540

    CAS  Google Scholar 

  50. Bell GW, Eggleston DB (2005) Species-specific avoidance responses by blue crabs and fish to chronic and episodic hypoxia. Mar Biol 146:761–770

    Article  Google Scholar 

  51. Gilbert D, Sundby B, Gobeil C et al (2005) A seventy-two year record of diminishing deep water oxygen in the St. Lawrence estuary: the northwest atlantic connection. Limnol Oceanogr 50:1654–1666

    Article  CAS  Google Scholar 

  52. Claireaux G, Webber DM, Kerr SR et al (1995) Physiology and behaviour of free-swimming atlantic cod (Gadus morhua) facing fluctuating salinity and oxygenation conditions. J Exp Biol 198:61–69

    PubMed  Google Scholar 

  53. Carlsten A, Poupa O, Volkman R (1983) Cardiac lesions in poikilotherms by catecholamines. Comp Biochem Physiol 76:567–581

    Article  CAS  Google Scholar 

  54. Lennard R, Huddart H (1992) The effect of hypoxic stress on the fine structure of the flounder heart (Platichthys flesus). Comp Biochem Physiol 101:723–732

    Article  CAS  Google Scholar 

  55. Wasser JS, Freund EV, Gonzales LA et al (1990) Force and acid-base state of turtle cardiac tissue exposed to combined anoxia and acidosis. Am J Physiol 259:R15–R20

    PubMed  CAS  Google Scholar 

  56. Wasser JS, Meinertz EA, Chang SY et al (1992) Metabolic and cardio dynamic responses of isolated turtle hearts to ischemia and reperfusion. Am J Physiol 262:R437–R443

    PubMed  CAS  Google Scholar 

  57. Bushnell PG, Steffensen JF, Johansen K (1984) Oxygen consumption and swimming performance in hypoxia-acclimated rainbow trout Salmo gairdneri. J Exp Biol 113:225–235

    Google Scholar 

  58. Sandblom E, Axelsson M (2005) Effects of hypoxia on the venous circulation in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol 140A:233–239

    CAS  Google Scholar 

  59. Marques IJ, Leito JTD, Spaink HP et al (2008) Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J Comp Physiol B Biochem 178:79–92

    Google Scholar 

  60. Petersen LH, Gamperl AK (2010) Effect of acute and chronic hypoxia on the swimming performance, metabolic capacity and cardiac function of Atlantic cod (Gadus morhua). J Exp Biol 213:808–819

    Article  PubMed  CAS  Google Scholar 

  61. Petersen LH, Gamperl AK (2010) In situ cardiac function in Atlantic cod (Gadus morhua):effects of acute and chronic hypoxia. J Exp Biol 213:820–830

    Article  PubMed  CAS  Google Scholar 

  62. Ostadal B, Kolar F (2007) Cardiac adaptation to chronic high altitude hypoxia. Respir Physiol Neurobiol 158:224–236

    Article  PubMed  CAS  Google Scholar 

  63. Kolar F, Ostadal B (2004) Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 53:S3–S13

    PubMed  CAS  Google Scholar 

  64. Overgaard J, Stecyk JAW, Gesser H et al (2004) Preconditioning stimuli do not benefit the myocardium of hypoxia-tolerant rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 174:329–340

    Article  PubMed  Google Scholar 

  65. Gamperl AK, Faust HA, Dougher B et al (2004) Hypoxia tolerance and preconditioning are not additive in the trout (Oncorhynchus mykiss) heart. J Exp Biol 207:2497–2505

    Article  PubMed  Google Scholar 

  66. Ostadalova I, Ostadal B, Kolar F et al (1998) Tolerance to ischemia and ischemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865

    Article  PubMed  CAS  Google Scholar 

  67. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–659

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by institutional grant AV0Z50110509 and grant from the Czech Science Foundation P302/11/1308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohuslav Ostadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ostadal, B. (2013). Comparative Aspects of Cardiac Adaptation. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_1

Download citation

Publish with us

Policies and ethics