Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 2492 Accesses

Abstract

In this chapter, it has been demonstrated how CFOAs have been used by a number of researchers in realizing other analog circuit building blocks such as various types of current conveyors, unity gain voltage and current followers, four terminal floating nullors, Current differencing buffered amplifiers, operational trans-resistance amplifiers, Current differencing transconductance amplifiers, third generation Current conveyors (CCIII), differential voltage second generation Current Conveyors, Current follower transconductance amplifiers, current controlled current conveyor transconductance amplifier, differential-input buffered transconductance amplifier and voltage differencing differential input buffered amplifier etc. These applications further establish the flexibility and versatility of CFOAs in analog circuit design.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: http://dx.doi.org/10.1007/978-1-4614-5188-4_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    R. Senani (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett 23(22):1202–1203

References

I. General References

  1. Yuce E, Minaei S (2007) Realization of various active devices using commercially available AD844s and external resistors. Electron World 113:46–49

    Google Scholar 

  2. Senani R, Bhaskar DR, Gupta SS, Singh VK (2012) Current-feedback op-amp, their applications, Bipolar/CMOS implementation and their variants, Chapter 2. In: Esteban Tlelo-Cuautle (ed) Integrated circuits in analog signal processing. Springer, New York, pp 61–84

    Google Scholar 

  3. Aronhime P, Wang K, Qian T (2001) Generalization of a theorem for replacing CCIIs by CFOAs in current-mode circuits. Analog Integr Circ Sign Process 28:27–33

    Article  Google Scholar 

  4. Liu SI, Chen JJ (1995) Realisation of analogue divider using current feedback amplifiers. IEE Proc Circ Devices Syst 142:45–48

    Article  Google Scholar 

II. Use of CFOAs in Realizing Various Types of Current Conveyors

  1. Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74:917–923

    Article  Google Scholar 

  2. Svoboda JA (1994) Comparison of RC op-amp and RC current conveyors filters. Int J Electron 76:615–626

    Article  Google Scholar 

  3. Chang C, Lee MS (1994) Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower. Electron Lett 30:2112–2113

    Article  Google Scholar 

  4. Vosper JV, Heima M (1996) Comparison of single- and dual-element frequency control in a CCII-based sinusoidal oscillator. Electron Lett 32:2293–2294

    Article  Google Scholar 

  5. Horng JW, Tsai CC, Lee MH (1996) Novel universal voltage-mode biquad filter with three inputs and one outputs using only two current conveyors. Int J Electron 80:543–546

    Article  Google Scholar 

  6. Wang HY, Lee CT (1997) Immittance function simulator using a single current conveyor. Electron Lett 33:574–576

    Article  Google Scholar 

  7. Liu SI, Lee JL (1997) Voltage-mode universal filters using two current conveyors. Int J Electron 82:145–149

    Article  Google Scholar 

  8. Horng JW, Lee MH, Cheng HC, Chang CW (1997) New CCII-based voltage-mode universal biquadratic filter. Int J Electron 82:151–155

    Article  Google Scholar 

  9. Chang CM (1997) Multifunction biquadratic filters using current conveyors. IEEE Trans Circ Syst II 44:956–958

    Article  Google Scholar 

  10. Lee JY, Tsao HW (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Meas 41(5):709–714

    Article  Google Scholar 

  11. Liu S-I, Kuo J-H, Tsay J-H (1992) New CCII-based current-mode biquadratic filters. Int J Electron 72:243–252

    Article  Google Scholar 

  12. Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583

    Article  Google Scholar 

  13. Brunn E, Olesen OH (1992) Conveyor implementations of generic current mode circuits. Int J Electron 73:129–140

    Article  Google Scholar 

  14. Svoboda JA (1994) Transfer function synthesis using current conveyors. Int J Electron 76:611–614

    Article  Google Scholar 

  15. Fabre A, Dayoub F, Duruisseau L, Kamoun M (1994) High input impedance insensitive second-order filters implemented from current conveyors. IEEE Trans Circ Syst I 41:918–921

    Article  Google Scholar 

  16. Martinez PA, Celma S, Gutiérrez I (1995) Wien-type oscillators using CCII+. Analog Integr Circ Sign Process 7:139–147

    Article  Google Scholar 

  17. Hwang YS, Liu SI, Wu DS, Wu YP (1995) Linear transformation all-pole filters based on current conveyors. Int J Electron 79(4):439–445

    Article  Google Scholar 

  18. Soliman AM (1996) New inverting-non-inverting bandpass and lowpass biquad circuit using current conveyors. Int J Electron 81:577–583

    Article  Google Scholar 

  19. Cajka J, Lindovsky D (1997) Universal RC-Active network using CCII+. J Electr Eng 48:98–100

    Google Scholar 

  20. Soliman AM (1997) Generation of current conveyors-based all-pass filters from op-amp-based circuits. IEEE Trans Circ Syst II 44:324–330

    Article  Google Scholar 

  21. Al-Walaie SA, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829

    Article  Google Scholar 

  22. Vrba K, Cajka J, Zeman V (1997) New RC-active networks using current conveyors. Radioengineering 6:18–21

    Google Scholar 

  23. Vrba K, Cajka J (1997) High-order one port elements for lowpass filter realization. J Electr Eng 48:31–34

    Google Scholar 

  24. Cajka J, Dostal T, Vrba K (1997) Realization of Nth-order voltage transfer function using current conveyors CCII. Radioengineering 6:22–25

    Google Scholar 

  25. Cicekoglu O (1998) New current conveyor based active-gyrator implementation. Microelectron J 29:525–528

    Article  Google Scholar 

  26. Cicekoglu MO (1998) Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 4:455–462

    Article  Google Scholar 

  27. Ozoguz S, Acar C (1998) On the realization of floating immittance function simulators using current conveyors. Int J Electron 85:463–475

    Article  Google Scholar 

  28. Soliman AM (1999) Synthesis of grounded capacitor and grounded resistor oscillators. J Franklin Inst 336:735–746

    Article  MATH  Google Scholar 

  29. Cicekoglu O, Ozcan S, Kuntman H (1999) Insensitive multifunction filter implemented with current conveyors and only grounded passive elements. Frequenz 53:158–160

    Article  Google Scholar 

  30. Chang CM, Tu SH (1999) Universal voltage-mode filter with four inputs and one output using two CCII + s. Int J Electron 86:305–309

    Article  Google Scholar 

  31. Abuelma’atti MT, Tasadduq NA (1999) New negative immittance function simulators using current conveyors. Microelectron J 30:911–915

    Article  Google Scholar 

  32. Soliman AM, Elwakil AS (1999) Wien oscillators using current conveyors. Comput Electr Eng 25:45–55

    Article  Google Scholar 

  33. Abuelma’atti MT (2000) Comment on: Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:177–181

    Article  Google Scholar 

  34. Cicekoglu O (2000) Reply to comment on: Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:183–184

    Article  Google Scholar 

  35. Abuelma’atti MT, Tasadduq NA (2000) Current-mode lowpass/bandpass and highpass filter using CCII + s. Frequenz 54:162–164

    Google Scholar 

  36. Abuelma’atti MT (2000) New sinusoidal oscillators with fully uncoupled control of oscillation frequency and condition using three CCII+s. Analog Integr Circ Sign Process 24:253–261

    Article  Google Scholar 

  37. Ozoguz S, Acar C, Toker A, Gunes EO (2001) Derivation of low-sensitivity current-mode CCII-based filters. IEE Proc Circ Devices Syst 148:115–120

    Article  Google Scholar 

  38. Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664

    Article  Google Scholar 

  39. Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238

    Article  MATH  Google Scholar 

  40. Biolek D, Cajka J, Vrba K, Zeman V (2002) Nth-order allpass filters using current conveyors. J Electr Eng 53:50–53

    Google Scholar 

  41. Hwang YS, Hung PT, Chen W, Liu SI (2002) Systematic generation of current-mode linear transformation filters based on multiple outputs CCIIs. Analog Integr Circ Sign Process 32:123–134

    Article  Google Scholar 

  42. Aksoy M, Ozcan S, Cicekoglu O, Kuntman H (2002) High output impedance current-mode third-order Butterworth filter topologies employing unity gain voltage buffers and equal-valued passive components. Int J Electron 90:589–598

    Article  Google Scholar 

  43. Shah NA, Malik MA (2005) High impedance voltage- and current-mode multifunction filters. Int J Electron Commun (AEU) 59:262–266

    Article  Google Scholar 

  44. Kumar P, Pal K (2005) Variable Q all-pass, notch and band-pass filters using single CCII. Frequenz 59:235–239

    Article  Google Scholar 

  45. Horng JW (2004) High input impedance voltage-mode universal biquadratic filters with three inputs using plus-type CCIIs. Int J Electron 91:465–475

    Article  Google Scholar 

  46. Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483

    Article  Google Scholar 

  47. Abuelma’atti MT, Bentrcia A, Al-Shahrani SM (2004) A novel mixed-mode current conveyor-based filter. Int J Electron 91:191–197

    Article  Google Scholar 

  48. Horng JW (2004) Voltage-mode universal biquadratic filters using CCIIs. IEICE Trans Fundam E-87-A:406–409

    Google Scholar 

  49. Horng JW, Hou CL, Chang CM, Chung WY, Tang HW, Wen YH (2005) Quadrature oscillators using CCIIs. Int J Electron 92:21–31

    Article  Google Scholar 

  50. Fongsamut C, Fujii N, Surakampontorn W (2005) Two new RC oscillators using CCIIs. Proc ISCIT 2:1138–1141

    Google Scholar 

  51. Khan AA, Bimal S, Dey KK, Roy SS (2005) Novel RC sinusoidal oscillator using second-generation current conveyors. IEEE Trans Instrum Meas 54:2402–2406

    Article  Google Scholar 

  52. Horng JW (2005) Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Comput Electr Eng 31:81–92

    Article  MATH  Google Scholar 

  53. Abuelma’atti MT, Shahrani SMA, Al-Absi MK (2005) Simulation of a mutually coupled circuit using plus-type CCIIs. Int J Electron 92:49–54

    Article  Google Scholar 

  54. Keskin AU (2005) Single CFA-based NICs with impedance scaling properties. J Circ Syst Comput 14:195–203

    Article  Google Scholar 

  55. Horng JW, Hou CL, Chang CM, Chung WY, Wei HY (2005) Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Comput Electr Eng 31:190–202

    Article  MATH  Google Scholar 

  56. Horng JW, Hou CL, Chang CM, Chung WY (2006) Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integr Circ Sign Process 47:73–83

    Article  MATH  Google Scholar 

  57. Yuce E, Cicekoglu O (2006) The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr Circ Sign Process 46:103–110

    Article  Google Scholar 

  58. Pandey N, Paul SK, Bhattacharyya A, Jain SB (2006) A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron Express 3:115–121

    Article  Google Scholar 

  59. Metin B, Cicekoglu O (2006) A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Trans Circ Syst II 53:483–486

    Article  Google Scholar 

  60. Maundy B, Gift S, Aronhime P (2007) Realization of a GIC using hybrid current conveyors/operational amplifier circuits. 50th Midwest Symp Circ Syst (MWSCAS 2007), pp 163–166, DOI:10.1109/MWSCAS.2007.4488562

  61. Maundy B, Gift S, Aronhime P (2007) A novel hybrid active inductor. IEEE Trans Circ Syst II 54:663–667

    Article  Google Scholar 

  62. Kumar P, Pal K, Rana S (2008) High input impedance universal biquadratic filters using current conveyors. J Active Passive Electron Devices 3:17–27

    Google Scholar 

  63. Kumar P, Pal K (2008) Universal biquadratic filter using single current conveyor. J Active Passive Electron Devices 3:7–16

    Google Scholar 

  64. Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173

    Google Scholar 

  65. Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effect. IEEE Trans Circ Syst I 55:276–283

    MathSciNet  Google Scholar 

  66. Yuce E (2008) Grounded inductor simulators with improved low-frequency performances. IEEE Trans Instrum Meas 57:1079–1084

    Article  Google Scholar 

  67. Maundy B, Gift S, Aronhime P (2008) Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:201–206

    Article  Google Scholar 

  68. Ferri G, Guerrini N, Silverii E, Tatone A (2008) Vibration damping using CCII-based inductance simulators. IEEE Trans Instrum Meas 57(5):907–914

    Article  Google Scholar 

  69. Pal K, Nigam MJ (2008) Novel active impedances using current conveyors. J Active Passive Electron Devices 3:29–34

    Google Scholar 

  70. Yuce E, Minaei S (2008) Electronically tunable simulated transformer and its application to Stagger-tuned filter. IEEE Trans Instrum Meas 57:2083–2088

    Article  Google Scholar 

  71. Senani R, Bhaskar DR (2008) Comment: Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:465–466

    Article  Google Scholar 

  72. Skotis GD, Psychalinos C (2010) Multiphase sinusoidal oscillator using second generation current conveyors. Int J Electron Commun (AEU) 64:1178–1181

    Article  Google Scholar 

  73. Maheshwari S (2010) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4:188–195

    Article  Google Scholar 

III. Realization of Four Terminal Floating Nullors (FTFN) Using CFOAs

  1. Nordholt EH (1982) Extending op-amp capabilities by using a current-source power supply. IEEE Trans Circ Syst 29:411–412

    Article  Google Scholar 

  2. Stevenson JK (1984) Two-way circuits with inverse transmission properties. Electron Lett 20:965–967

    Article  Google Scholar 

  3. Huijsing JH (1990) Operational amplifier. IEE Proc Circ Devices Syst 137:131–136

    Article  Google Scholar 

  4. Senani R (1987) A novel application of four-terminal floating nullor. IEEE Proc 75:1544–1546

    Article  Google Scholar 

  5. Hou CL, Yean R, Chang CK (1996) Single-element controlled oscillators using single FTFN. Electron Lett 32:2032–2033

    Article  Google Scholar 

  6. Liu SI (1997) Single-resistance-controlled sinusoidal oscillators using two FTFNs. Electron Lett 33:14

    Google Scholar 

  7. Abuelma’atti MT, Al-Zaher HA (1998) Current-mode sinusoidal oscillator using two FTFNs. Proc Natl Sci Counc Repub China A 22:758–764

    Google Scholar 

  8. Wang HY, Lee CT (1998) Realization of R-L and C-D immittances using single FTFN. Electron Lett 34:502–503

    Article  Google Scholar 

  9. Bhaskar DR (1999) Single resistance controlled sinusoidal oscillator using single FTFN. Electron Lett 35:190

    Article  Google Scholar 

  10. Abuelma’atti MT, Al-Zaher HA (1999) Current-mode quadrature sinusoidal oscillators using two FTFNs. Frequenz 53:27–30

    Google Scholar 

  11. Abuelma’atti MT, Al-Zaher HA (1999) Current-mode sinusoidal oscillator using single FTFN. IEEE Trans Circ Syst II 46:69–74

    Article  Google Scholar 

  12. Gunes EO, Anday F (1999) Realization of voltage/current-mode filters using four-terminal floating nullors. Microelectron J 30:211–216

    Article  Google Scholar 

  13. Cam U, Toker A, Cicekoglu O, Kuntman H (2000) Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integr Circ Sign Process 24:231–238

    Article  Google Scholar 

  14. Cam U, Cicekoglu O, Kuntman H (2000) Universal series and parallel immittance simulators using four terminal floating nullors. Analog Integr Circ Sign Process 25:59–66

    Article  Google Scholar 

  15. Lee CT, Wang HY (2001) Minimum realization for FTFN based SRCO. Electron Lett 37:1207–1208

    Article  Google Scholar 

  16. Cam U, Cicekoglu O, Kuntman H (2001) Novel lossless floating immittance simulator employing only two FTFNs. Analog Integr Circ Sign Process 29:233–235

    Article  Google Scholar 

  17. Wang HY, Chung H, Huang WC (2002) Realization of an nth-order parallel immittance function employing only (n − 1) FTFNs. Int J Electron 89:645–650

    Article  Google Scholar 

  18. Bhaskar DR (2002) Grounded-capacitor SRCO using only one PFTFN. Electron Lett 38(20):1156–1157

    Article  Google Scholar 

IV. CFOA-Based of Current Differencing Buffered Amplifier (CDBA)

  1. Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier for analog signal processing filters. Microelectron J 30:157–160

    Article  Google Scholar 

  2. Acar C, Ozoguz S (2000) nth-order current transfer function synthesis using current differencing buffered amplifier: signal-flow graph approach. Microelectron J 31:49–53

    Article  Google Scholar 

  3. Ozcan S, Toker A, Acar C, Kuntman H, Cicekoglu O (2000) Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron J 31:169–174

    Article  Google Scholar 

  4. Ozcan S, Kuntman H, Cicekoglu O (2002) Cascadable current mode multipurpose filters employing current differencing buffered amplifier (CDBA). Int J Electron Commun (AEU) 56:67–72

    Article  Google Scholar 

  5. Horng JW (2002) Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors. IEICE Trans Fundam E85-A:1416–1419

    Google Scholar 

  6. Keskin AU (2004) A four quadrant analog multiplier employing single CDBA. Analog Integr Circ Sign Process 40:99–101

    Article  Google Scholar 

  7. Keskin AU (2005) Voltage-mode notch filters using single CDBA. Frequenz 59:1–4

    Article  Google Scholar 

  8. Tangsrirat W, Surakampontorn W (2005) Realization of multiple-output biquadratic filters using current differencing buffered amplifiers. Int J Electron 92:313–325

    Article  Google Scholar 

  9. Keskin AU (2006) Multi-function biquad using single CDBA. Electr Eng 88:353–356

    Article  Google Scholar 

  10. Keskin AU, Aydin C, Hancioglu E, Acar C (2006) Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz 60:21–23

    Article  Google Scholar 

  11. Koksal M, Sagbas M (2007) A versatile signal flow graph realization of a general transfer function by using CDBA. Int J Electron Commun (AEU) 61:35–42

    Article  Google Scholar 

  12. Tangsrirat W, Pisitchalermpong S (2007) CDBA-based quadrature sinusoidal oscillator. Frequenz 61:102–104

    Article  Google Scholar 

  13. Tangsrirat W, Pukkalanun T, Surakampontorn W (2008) CDBA-based universal biquad filter and quadrature oscillator. Active Passive Electron Comp: Article ID 247171

    Google Scholar 

  14. Tangsrirat W, Prasertsom D, Piyatat T, Surakampontorn W (2008) Single-resistance-controlled quadrature oscillator using current differencing buffered amplifiers. Int J Electron 95:1119–1126

    Article  Google Scholar 

  15. Pathak JK, Singh AK, Senani R (2010) Systematic realization of quadrature oscillators using current differencing buffered amplifiers. IET Circ Devices Syst 5:203–211

    Article  Google Scholar 

V. Unity Gain VF and CF Based Circuits Realized with CFOAs

  1. Celma S, Sabadell J, Martinez P (1995) Universal filter using unity-gain cells. Electron Lett 31:1817–1818

    Article  Google Scholar 

  2. Senani R, Gupta SS (1997) Universal voltage-mode/current-mode biquad filter realized with current feedback op-amps. Frequenz 51:203–208

    Article  Google Scholar 

  3. Abuelma’atti MT, Daghreer HA (1997) New single-resistor controlled sinusoidal oscillator circuit using unity-gain current followers. Active Passive Electron Comp 20:105–109

    Article  Google Scholar 

  4. Weng RM, Lai JR, Lee MH (2000) New universal biquad filters using only two unity gain cells. Int J Electron 87(1):57–61

    Article  Google Scholar 

  5. Kuntman H, Cicekoglu O, Ozcan S (2002) Realization of current-mode third order Butterworth filters employing equal valued passive elements and unity gain buffers. Analog Integr Circ Sign Process 30:253–256

    Article  Google Scholar 

  6. Gupta SS, Senani R (2004) New single resistance controlled oscillators employing a reduced number of unity-gain cells. IEICE Electron Express 1:507–512

    Article  Google Scholar 

  7. Keskin AU, Toker A (2004) A NIC with impedance scaling properties using unity gain cells. Analog Integr Circ Sign Process 41:85–87

    Article  Google Scholar 

  8. Nandi R, Kar M (2009) Third order lowpass Butterworth filters using unity gain current amplifiers. IEICE Electron Express 6:1450–1455

    Article  Google Scholar 

VI. Use of CFOAs in Realizing Operational Trans-resistance Amplifiers (OTRA)

  1. Chen JJ, Tsao HW, Chen CC (1992) Operational transresistance amplifier using CMOS technology. Electron Lett 28:2087–2088

    Article  Google Scholar 

  2. Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sign Process 20:11–26

    Article  Google Scholar 

  3. Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2004) Novel two OTRA-based grounded immittance simulator topologies. Analog Integr Circ Sign Process 39:169–175

    Article  Google Scholar 

  4. Hou CL, Chien HC, Lo YK (2005) Square wave generators employing OTRAs. IEE Proc Circ Devices Syst 152:718–722

    Article  Google Scholar 

  5. Lo YK, Chien HC (2006) Current-mode monostable multivibrators using OTRAs. IEEE Trans Circ Syst II 53:1274–1278

    Article  Google Scholar 

  6. Kilinc S, Salama KN, Cam U (2006) Realization of fully controllable negative inductance with single operational transresistance amplifier. Circ Syst Sign Process 5(1):47–57

    Article  MATH  Google Scholar 

  7. Chen JJ, Tsao HW, Liu SI, Chiu W (1995) Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proc Circ Devices Syst 142:186–192

    Article  Google Scholar 

  8. Lo YK, Chien HC (2007) Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans Circ Syst II 54:1110–1114

    Google Scholar 

  9. Lo YK, Chien HC (2007) Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circ Devices Syst 1:257–261

    Article  Google Scholar 

  10. Lo YK, Chien HC, Chiu HJ (2008) Switch-controllable OTRA-based bistable multivibrator. IET Circ Devices Syst 2:373–382

    Article  Google Scholar 

  11. Lo YK, Chien HC, Chiu HJ (2010) Current-input OTRA Schmitt trigger with dual hysteresis modes. Int J Circ Theory Appl 38:739–746

    Article  MATH  Google Scholar 

  12. Sanchez-Lopez C, Martinez-Romero E, Tlelo-Cuautle E (2011) Symbolic analysis of OTRAs-based circuits. J Appl Res Technol 9:69–80

    Google Scholar 

  13. Gupta A, Senani R, Bhaskar DR, Singh AK (2011) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circ Syst Sign Process 31:489–499

    Article  MathSciNet  Google Scholar 

VII. Use of CFOA in Realizing Differential Input and Buffered Trans-Conductance Amplifier (DBTA)

  1. Herencsar N, Vrba K, Koton J, Lattenberg I (2009) The conception of differential-input buffered and transconductance amplifier (DBTA) and its application. IEICE Electron Express 6(6):329–334

    Article  Google Scholar 

  2. Herencsar N, Koton J, Vrba K, Lahiri A (2009) New voltage-mode quadrature oscillator employing single DBTA and only grounded passive elements. IEICE Electron Express 6:1708–1714

    Article  Google Scholar 

  3. Herencsar N, Koton J, Vrba K, Lattenberg I (2010) New voltage-mode universal filter and sinusoidal oscillator using only single DBTA. Int J Electron 97:365–379

    Article  Google Scholar 

VIII. Current Differencing Transconductance Amplifier (CDTA) Using CFOAs

  1. Biolek D (2003) CDTA-building block for current-mode analog signal processing. Proc ECCTD’03, Krakow, Poland III, pp 397–400

    Google Scholar 

  2. Bekri AT, Anday F (2005) nth-order low-pass filter employing current differencing transconductance amplifiers. Proc 2005 European Conf Circ Theor Appl 2:II/193-II/196

    Google Scholar 

  3. Tangsrirat W (2007) Current differencing transconductance amplifier-based current-mode four-phase quadrature oscillator. Indian J Eng Mater Sci 14:289–294

    Google Scholar 

  4. Prasad D, Bhaskar DR, Singh AK (2008) Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans Electron 5:257–259

    Google Scholar 

  5. Silapan P, Siripruchyanum M (2011) Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circ Sign Process 68:111–128

    Article  Google Scholar 

  6. Lahiri A (2010) Resistor-less mixed-mode quadrature sinusoidal oscillator. Int J Comput Electr Eng 2:63–66

    Article  Google Scholar 

IX. Current Follower Transconductance Amplifier (CFTA) Realized with CFOAs

  1. Herencsar N, Koton J, Vrba K, Misurec J (2009) A novel current-mode SIMO type universal filter using CFTAs. Contemp Eng Sci 2:59–66

    Google Scholar 

  2. Herencsar N, Koton J, Vrba K (2010) Realization of current-mode KHN-equivalent biquad using current follower transconductance amplifiers (CFTAs). IEICE Trans Fundam E93:1816–1819

    Article  Google Scholar 

X. CFOA Realizations of Current-Controlled Current Conveyor Transconductance Amplifier (CCCC-TA)

  1. Siripruchyanun M, Jaikla W (2007) Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr Eng 19:443–453

    Google Scholar 

  2. Maheshwari S, Singh SV, Chauhan DS (2011) Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circ Devices Syst 5(3):149–158

    Article  Google Scholar 

XI. Voltage-Differencing Differential-Input Buffered Amplifier (VD-DIBA) Realized with CFOAs

  1. Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32

    Google Scholar 

  2. Prasad D, Bhaskar DR, Pushkar KL (2011) Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active passive Electron Compon: Article ID 101432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K., Singh, V.K. (2013). Realization of Other Building Blocks Using CFOAs. In: Current Feedback Operational Amplifiers and Their Applications. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5188-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5188-4_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5187-7

  • Online ISBN: 978-1-4614-5188-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics