Realization of Other Building Blocks Using CFOAs

Part of the Analog Circuits and Signal Processing book series (ACSP)


In this chapter, it has been demonstrated how CFOAs have been used by a number of researchers in realizing other analog circuit building blocks such as various types of current conveyors, unity gain voltage and current followers, four terminal floating nullors, Current differencing buffered amplifiers, operational trans-resistance amplifiers, Current differencing transconductance amplifiers, third generation Current conveyors (CCIII), differential voltage second generation Current Conveyors, Current follower transconductance amplifiers, current controlled current conveyor transconductance amplifier, differential-input buffered transconductance amplifier and voltage differencing differential input buffered amplifier etc. These applications further establish the flexibility and versatility of CFOAs in analog circuit design.


Current Feedback Op-amps (CFOAs) Controlled Current Conveyor Transconductance Amplifier (CCCC-TA) Current Differencing Buffered Amplifier Current Follower (CF) Unity Gain VF 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


I. General References

  1. 1.
    Yuce E, Minaei S (2007) Realization of various active devices using commercially available AD844s and external resistors. Electron World 113:46–49Google Scholar
  2. 2.
    Senani R, Bhaskar DR, Gupta SS, Singh VK (2012) Current-feedback op-amp, their applications, Bipolar/CMOS implementation and their variants, Chapter 2. In: Esteban Tlelo-Cuautle (ed) Integrated circuits in analog signal processing. Springer, New York, pp 61–84Google Scholar
  3. 3.
    Aronhime P, Wang K, Qian T (2001) Generalization of a theorem for replacing CCIIs by CFOAs in current-mode circuits. Analog Integr Circ Sign Process 28:27–33CrossRefGoogle Scholar
  4. 4.
    Liu SI, Chen JJ (1995) Realisation of analogue divider using current feedback amplifiers. IEE Proc Circ Devices Syst 142:45–48CrossRefGoogle Scholar

II. Use of CFOAs in Realizing Various Types of Current Conveyors

  1. 5.
    Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74:917–923CrossRefGoogle Scholar
  2. 6.
    Svoboda JA (1994) Comparison of RC op-amp and RC current conveyors filters. Int J Electron 76:615–626CrossRefGoogle Scholar
  3. 7.
    Chang C, Lee MS (1994) Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower. Electron Lett 30:2112–2113CrossRefGoogle Scholar
  4. 8.
    Vosper JV, Heima M (1996) Comparison of single- and dual-element frequency control in a CCII-based sinusoidal oscillator. Electron Lett 32:2293–2294CrossRefGoogle Scholar
  5. 9.
    Horng JW, Tsai CC, Lee MH (1996) Novel universal voltage-mode biquad filter with three inputs and one outputs using only two current conveyors. Int J Electron 80:543–546CrossRefGoogle Scholar
  6. 10.
    Wang HY, Lee CT (1997) Immittance function simulator using a single current conveyor. Electron Lett 33:574–576CrossRefGoogle Scholar
  7. 11.
    Liu SI, Lee JL (1997) Voltage-mode universal filters using two current conveyors. Int J Electron 82:145–149CrossRefGoogle Scholar
  8. 12.
    Horng JW, Lee MH, Cheng HC, Chang CW (1997) New CCII-based voltage-mode universal biquadratic filter. Int J Electron 82:151–155CrossRefGoogle Scholar
  9. 13.
    Chang CM (1997) Multifunction biquadratic filters using current conveyors. IEEE Trans Circ Syst II 44:956–958CrossRefGoogle Scholar
  10. 14.
    Lee JY, Tsao HW (1992) True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans Instrum Meas 41(5):709–714CrossRefGoogle Scholar
  11. 15.
    Liu S-I, Kuo J-H, Tsay J-H (1992) New CCII-based current-mode biquadratic filters. Int J Electron 72:243–252CrossRefGoogle Scholar
  12. 16.
    Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583CrossRefGoogle Scholar
  13. 17.
    Brunn E, Olesen OH (1992) Conveyor implementations of generic current mode circuits. Int J Electron 73:129–140CrossRefGoogle Scholar
  14. 18.
    Svoboda JA (1994) Transfer function synthesis using current conveyors. Int J Electron 76:611–614CrossRefGoogle Scholar
  15. 19.
    Fabre A, Dayoub F, Duruisseau L, Kamoun M (1994) High input impedance insensitive second-order filters implemented from current conveyors. IEEE Trans Circ Syst I 41:918–921CrossRefGoogle Scholar
  16. 20.
    Martinez PA, Celma S, Gutiérrez I (1995) Wien-type oscillators using CCII+. Analog Integr Circ Sign Process 7:139–147CrossRefGoogle Scholar
  17. 21.
    Hwang YS, Liu SI, Wu DS, Wu YP (1995) Linear transformation all-pole filters based on current conveyors. Int J Electron 79(4):439–445CrossRefGoogle Scholar
  18. 22.
    Soliman AM (1996) New inverting-non-inverting bandpass and lowpass biquad circuit using current conveyors. Int J Electron 81:577–583CrossRefGoogle Scholar
  19. 23.
    Cajka J, Lindovsky D (1997) Universal RC-Active network using CCII+. J Electr Eng 48:98–100Google Scholar
  20. 24.
    Soliman AM (1997) Generation of current conveyors-based all-pass filters from op-amp-based circuits. IEEE Trans Circ Syst II 44:324–330CrossRefGoogle Scholar
  21. 25.
    Al-Walaie SA, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829CrossRefGoogle Scholar
  22. 26.
    Vrba K, Cajka J, Zeman V (1997) New RC-active networks using current conveyors. Radioengineering 6:18–21Google Scholar
  23. 27.
    Vrba K, Cajka J (1997) High-order one port elements for lowpass filter realization. J Electr Eng 48:31–34Google Scholar
  24. 28.
    Cajka J, Dostal T, Vrba K (1997) Realization of Nth-order voltage transfer function using current conveyors CCII. Radioengineering 6:22–25Google Scholar
  25. 29.
    Cicekoglu O (1998) New current conveyor based active-gyrator implementation. Microelectron J 29:525–528CrossRefGoogle Scholar
  26. 30.
    Cicekoglu MO (1998) Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 4:455–462CrossRefGoogle Scholar
  27. 31.
    Ozoguz S, Acar C (1998) On the realization of floating immittance function simulators using current conveyors. Int J Electron 85:463–475CrossRefGoogle Scholar
  28. 32.
    Soliman AM (1999) Synthesis of grounded capacitor and grounded resistor oscillators. J Franklin Inst 336:735–746zbMATHCrossRefGoogle Scholar
  29. 33.
    Cicekoglu O, Ozcan S, Kuntman H (1999) Insensitive multifunction filter implemented with current conveyors and only grounded passive elements. Frequenz 53:158–160CrossRefGoogle Scholar
  30. 34.
    Chang CM, Tu SH (1999) Universal voltage-mode filter with four inputs and one output using two CCII + s. Int J Electron 86:305–309CrossRefGoogle Scholar
  31. 35.
    Abuelma’atti MT, Tasadduq NA (1999) New negative immittance function simulators using current conveyors. Microelectron J 30:911–915CrossRefGoogle Scholar
  32. 36.
    Soliman AM, Elwakil AS (1999) Wien oscillators using current conveyors. Comput Electr Eng 25:45–55CrossRefGoogle Scholar
  33. 37.
    Abuelma’atti MT (2000) Comment on: Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:177–181CrossRefGoogle Scholar
  34. 38.
    Cicekoglu O (2000) Reply to comment on: Active simulation of grounded inductors with CCII + s and grounded passive elements. Int J Electron 87:183–184CrossRefGoogle Scholar
  35. 39.
    Abuelma’atti MT, Tasadduq NA (2000) Current-mode lowpass/bandpass and highpass filter using CCII + s. Frequenz 54:162–164Google Scholar
  36. 40.
    Abuelma’atti MT (2000) New sinusoidal oscillators with fully uncoupled control of oscillation frequency and condition using three CCII+s. Analog Integr Circ Sign Process 24:253–261CrossRefGoogle Scholar
  37. 41.
    Ozoguz S, Acar C, Toker A, Gunes EO (2001) Derivation of low-sensitivity current-mode CCII-based filters. IEE Proc Circ Devices Syst 148:115–120CrossRefGoogle Scholar
  38. 42.
    Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664CrossRefGoogle Scholar
  39. 43.
    Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238zbMATHCrossRefGoogle Scholar
  40. 44.
    Biolek D, Cajka J, Vrba K, Zeman V (2002) Nth-order allpass filters using current conveyors. J Electr Eng 53:50–53Google Scholar
  41. 45.
    Hwang YS, Hung PT, Chen W, Liu SI (2002) Systematic generation of current-mode linear transformation filters based on multiple outputs CCIIs. Analog Integr Circ Sign Process 32:123–134CrossRefGoogle Scholar
  42. 46.
    Aksoy M, Ozcan S, Cicekoglu O, Kuntman H (2002) High output impedance current-mode third-order Butterworth filter topologies employing unity gain voltage buffers and equal-valued passive components. Int J Electron 90:589–598CrossRefGoogle Scholar
  43. 47.
    Shah NA, Malik MA (2005) High impedance voltage- and current-mode multifunction filters. Int J Electron Commun (AEU) 59:262–266CrossRefGoogle Scholar
  44. 48.
    Kumar P, Pal K (2005) Variable Q all-pass, notch and band-pass filters using single CCII. Frequenz 59:235–239CrossRefGoogle Scholar
  45. 49.
    Horng JW (2004) High input impedance voltage-mode universal biquadratic filters with three inputs using plus-type CCIIs. Int J Electron 91:465–475CrossRefGoogle Scholar
  46. 50.
    Gift SJG (2004) New simulated inductor using operational conveyors. Int J Electron 91:477–483CrossRefGoogle Scholar
  47. 51.
    Abuelma’atti MT, Bentrcia A, Al-Shahrani SM (2004) A novel mixed-mode current conveyor-based filter. Int J Electron 91:191–197CrossRefGoogle Scholar
  48. 52.
    Horng JW (2004) Voltage-mode universal biquadratic filters using CCIIs. IEICE Trans Fundam E-87-A:406–409Google Scholar
  49. 53.
    Horng JW, Hou CL, Chang CM, Chung WY, Tang HW, Wen YH (2005) Quadrature oscillators using CCIIs. Int J Electron 92:21–31CrossRefGoogle Scholar
  50. 54.
    Fongsamut C, Fujii N, Surakampontorn W (2005) Two new RC oscillators using CCIIs. Proc ISCIT 2:1138–1141Google Scholar
  51. 55.
    Khan AA, Bimal S, Dey KK, Roy SS (2005) Novel RC sinusoidal oscillator using second-generation current conveyors. IEEE Trans Instrum Meas 54:2402–2406CrossRefGoogle Scholar
  52. 56.
    Horng JW (2005) Current conveyors based allpass filters and quadrature oscillators employing grounded capacitors and resistors. Comput Electr Eng 31:81–92zbMATHCrossRefGoogle Scholar
  53. 57.
    Abuelma’atti MT, Shahrani SMA, Al-Absi MK (2005) Simulation of a mutually coupled circuit using plus-type CCIIs. Int J Electron 92:49–54CrossRefGoogle Scholar
  54. 58.
    Keskin AU (2005) Single CFA-based NICs with impedance scaling properties. J Circ Syst Comput 14:195–203CrossRefGoogle Scholar
  55. 59.
    Horng JW, Hou CL, Chang CM, Chung WY, Wei HY (2005) Voltage-mode universal biquadratic filters with one input and five outputs using MOCCIIs. Comput Electr Eng 31:190–202zbMATHCrossRefGoogle Scholar
  56. 60.
    Horng JW, Hou CL, Chang CM, Chung WY (2006) Voltage-mode universal biquadratic filters with one input and five outputs. Analog Integr Circ Sign Process 47:73–83zbMATHCrossRefGoogle Scholar
  57. 61.
    Yuce E, Cicekoglu O (2006) The effects of non-idealities and current limitations on the simulated inductances employing current conveyors. Analog Integr Circ Sign Process 46:103–110CrossRefGoogle Scholar
  58. 62.
    Pandey N, Paul SK, Bhattacharyya A, Jain SB (2006) A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron Express 3:115–121CrossRefGoogle Scholar
  59. 63.
    Metin B, Cicekoglu O (2006) A novel floating lossy inductance realization topology with NICs using current conveyors. IEEE Trans Circ Syst II 53:483–486CrossRefGoogle Scholar
  60. 64.
    Maundy B, Gift S, Aronhime P (2007) Realization of a GIC using hybrid current conveyors/operational amplifier circuits. 50th Midwest Symp Circ Syst (MWSCAS 2007), pp 163–166, DOI: 10.1109/MWSCAS.2007.4488562
  61. 65.
    Maundy B, Gift S, Aronhime P (2007) A novel hybrid active inductor. IEEE Trans Circ Syst II 54:663–667CrossRefGoogle Scholar
  62. 66.
    Kumar P, Pal K, Rana S (2008) High input impedance universal biquadratic filters using current conveyors. J Active Passive Electron Devices 3:17–27Google Scholar
  63. 67.
    Kumar P, Pal K (2008) Universal biquadratic filter using single current conveyor. J Active Passive Electron Devices 3:7–16Google Scholar
  64. 68.
    Pandey N, Paul SK, Jain SB (2008) Voltage mode universal filter using two plus type CCIIs. J Active Passive Electron Devices 3:165–173Google Scholar
  65. 69.
    Yuce E (2008) Negative impedance converter with reduced nonideal gain and parasitic impedance effect. IEEE Trans Circ Syst I 55:276–283MathSciNetGoogle Scholar
  66. 70.
    Yuce E (2008) Grounded inductor simulators with improved low-frequency performances. IEEE Trans Instrum Meas 57:1079–1084CrossRefGoogle Scholar
  67. 71.
    Maundy B, Gift S, Aronhime P (2008) Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:201–206CrossRefGoogle Scholar
  68. 72.
    Ferri G, Guerrini N, Silverii E, Tatone A (2008) Vibration damping using CCII-based inductance simulators. IEEE Trans Instrum Meas 57(5):907–914CrossRefGoogle Scholar
  69. 73.
    Pal K, Nigam MJ (2008) Novel active impedances using current conveyors. J Active Passive Electron Devices 3:29–34Google Scholar
  70. 74.
    Yuce E, Minaei S (2008) Electronically tunable simulated transformer and its application to Stagger-tuned filter. IEEE Trans Instrum Meas 57:2083–2088CrossRefGoogle Scholar
  71. 75.
    Senani R, Bhaskar DR (2008) Comment: Practical voltage/current-controlled grounded resistor with dynamic range extension. IET Circ Devices Syst 2:465–466CrossRefGoogle Scholar
  72. 76.
    Skotis GD, Psychalinos C (2010) Multiphase sinusoidal oscillator using second generation current conveyors. Int J Electron Commun (AEU) 64:1178–1181CrossRefGoogle Scholar
  73. 77.
    Maheshwari S (2010) Current-mode third-order quadrature oscillator. IET Circ Devices Syst 4:188–195CrossRefGoogle Scholar

III. Realization of Four Terminal Floating Nullors (FTFN) Using CFOAs

  1. 78.
    Nordholt EH (1982) Extending op-amp capabilities by using a current-source power supply. IEEE Trans Circ Syst 29:411–412CrossRefGoogle Scholar
  2. 79.
    Stevenson JK (1984) Two-way circuits with inverse transmission properties. Electron Lett 20:965–967CrossRefGoogle Scholar
  3. 80.
    Huijsing JH (1990) Operational amplifier. IEE Proc Circ Devices Syst 137:131–136CrossRefGoogle Scholar
  4. 81.
    Senani R (1987) A novel application of four-terminal floating nullor. IEEE Proc 75:1544–1546CrossRefGoogle Scholar
  5. 82.
    Hou CL, Yean R, Chang CK (1996) Single-element controlled oscillators using single FTFN. Electron Lett 32:2032–2033CrossRefGoogle Scholar
  6. 83.
    Liu SI (1997) Single-resistance-controlled sinusoidal oscillators using two FTFNs. Electron Lett 33:14Google Scholar
  7. 84.
    Abuelma’atti MT, Al-Zaher HA (1998) Current-mode sinusoidal oscillator using two FTFNs. Proc Natl Sci Counc Repub China A 22:758–764Google Scholar
  8. 85.
    Wang HY, Lee CT (1998) Realization of R-L and C-D immittances using single FTFN. Electron Lett 34:502–503CrossRefGoogle Scholar
  9. 86.
    Bhaskar DR (1999) Single resistance controlled sinusoidal oscillator using single FTFN. Electron Lett 35:190CrossRefGoogle Scholar
  10. 87.
    Abuelma’atti MT, Al-Zaher HA (1999) Current-mode quadrature sinusoidal oscillators using two FTFNs. Frequenz 53:27–30Google Scholar
  11. 88.
    Abuelma’atti MT, Al-Zaher HA (1999) Current-mode sinusoidal oscillator using single FTFN. IEEE Trans Circ Syst II 46:69–74CrossRefGoogle Scholar
  12. 89.
    Gunes EO, Anday F (1999) Realization of voltage/current-mode filters using four-terminal floating nullors. Microelectron J 30:211–216CrossRefGoogle Scholar
  13. 90.
    Cam U, Toker A, Cicekoglu O, Kuntman H (2000) Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integr Circ Sign Process 24:231–238CrossRefGoogle Scholar
  14. 91.
    Cam U, Cicekoglu O, Kuntman H (2000) Universal series and parallel immittance simulators using four terminal floating nullors. Analog Integr Circ Sign Process 25:59–66CrossRefGoogle Scholar
  15. 92.
    Lee CT, Wang HY (2001) Minimum realization for FTFN based SRCO. Electron Lett 37:1207–1208CrossRefGoogle Scholar
  16. 93.
    Cam U, Cicekoglu O, Kuntman H (2001) Novel lossless floating immittance simulator employing only two FTFNs. Analog Integr Circ Sign Process 29:233–235CrossRefGoogle Scholar
  17. 94.
    Wang HY, Chung H, Huang WC (2002) Realization of an nth-order parallel immittance function employing only (n − 1) FTFNs. Int J Electron 89:645–650CrossRefGoogle Scholar
  18. 95.
    Bhaskar DR (2002) Grounded-capacitor SRCO using only one PFTFN. Electron Lett 38(20):1156–1157CrossRefGoogle Scholar

IV. CFOA-Based of Current Differencing Buffered Amplifier (CDBA)

  1. 96.
    Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier for analog signal processing filters. Microelectron J 30:157–160CrossRefGoogle Scholar
  2. 97.
    Acar C, Ozoguz S (2000) nth-order current transfer function synthesis using current differencing buffered amplifier: signal-flow graph approach. Microelectron J 31:49–53CrossRefGoogle Scholar
  3. 98.
    Ozcan S, Toker A, Acar C, Kuntman H, Cicekoglu O (2000) Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron J 31:169–174CrossRefGoogle Scholar
  4. 99.
    Ozcan S, Kuntman H, Cicekoglu O (2002) Cascadable current mode multipurpose filters employing current differencing buffered amplifier (CDBA). Int J Electron Commun (AEU) 56:67–72CrossRefGoogle Scholar
  5. 100.
    Horng JW (2002) Current differencing buffered amplifiers based single resistance controlled quadrature oscillator employing grounded capacitors. IEICE Trans Fundam E85-A:1416–1419Google Scholar
  6. 101.
    Keskin AU (2004) A four quadrant analog multiplier employing single CDBA. Analog Integr Circ Sign Process 40:99–101CrossRefGoogle Scholar
  7. 102.
    Keskin AU (2005) Voltage-mode notch filters using single CDBA. Frequenz 59:1–4CrossRefGoogle Scholar
  8. 103.
    Tangsrirat W, Surakampontorn W (2005) Realization of multiple-output biquadratic filters using current differencing buffered amplifiers. Int J Electron 92:313–325CrossRefGoogle Scholar
  9. 104.
    Keskin AU (2006) Multi-function biquad using single CDBA. Electr Eng 88:353–356CrossRefGoogle Scholar
  10. 105.
    Keskin AU, Aydin C, Hancioglu E, Acar C (2006) Quadrature oscillator using current differencing buffered amplifiers (CDBA). Frequenz 60:21–23CrossRefGoogle Scholar
  11. 106.
    Koksal M, Sagbas M (2007) A versatile signal flow graph realization of a general transfer function by using CDBA. Int J Electron Commun (AEU) 61:35–42CrossRefGoogle Scholar
  12. 107.
    Tangsrirat W, Pisitchalermpong S (2007) CDBA-based quadrature sinusoidal oscillator. Frequenz 61:102–104CrossRefGoogle Scholar
  13. 108.
    Tangsrirat W, Pukkalanun T, Surakampontorn W (2008) CDBA-based universal biquad filter and quadrature oscillator. Active Passive Electron Comp: Article ID 247171Google Scholar
  14. 109.
    Tangsrirat W, Prasertsom D, Piyatat T, Surakampontorn W (2008) Single-resistance-controlled quadrature oscillator using current differencing buffered amplifiers. Int J Electron 95:1119–1126CrossRefGoogle Scholar
  15. 110.
    Pathak JK, Singh AK, Senani R (2010) Systematic realization of quadrature oscillators using current differencing buffered amplifiers. IET Circ Devices Syst 5:203–211CrossRefGoogle Scholar

V. Unity Gain VF and CF Based Circuits Realized with CFOAs

  1. 111.
    Celma S, Sabadell J, Martinez P (1995) Universal filter using unity-gain cells. Electron Lett 31:1817–1818CrossRefGoogle Scholar
  2. 112.
    Senani R, Gupta SS (1997) Universal voltage-mode/current-mode biquad filter realized with current feedback op-amps. Frequenz 51:203–208CrossRefGoogle Scholar
  3. 113.
    Abuelma’atti MT, Daghreer HA (1997) New single-resistor controlled sinusoidal oscillator circuit using unity-gain current followers. Active Passive Electron Comp 20:105–109CrossRefGoogle Scholar
  4. 114.
    Weng RM, Lai JR, Lee MH (2000) New universal biquad filters using only two unity gain cells. Int J Electron 87(1):57–61CrossRefGoogle Scholar
  5. 115.
    Kuntman H, Cicekoglu O, Ozcan S (2002) Realization of current-mode third order Butterworth filters employing equal valued passive elements and unity gain buffers. Analog Integr Circ Sign Process 30:253–256CrossRefGoogle Scholar
  6. 116.
    Gupta SS, Senani R (2004) New single resistance controlled oscillators employing a reduced number of unity-gain cells. IEICE Electron Express 1:507–512CrossRefGoogle Scholar
  7. 117.
    Keskin AU, Toker A (2004) A NIC with impedance scaling properties using unity gain cells. Analog Integr Circ Sign Process 41:85–87CrossRefGoogle Scholar
  8. 118.
    Nandi R, Kar M (2009) Third order lowpass Butterworth filters using unity gain current amplifiers. IEICE Electron Express 6:1450–1455CrossRefGoogle Scholar

VI. Use of CFOAs in Realizing Operational Trans-resistance Amplifiers (OTRA)

  1. 119.
    Chen JJ, Tsao HW, Chen CC (1992) Operational transresistance amplifier using CMOS technology. Electron Lett 28:2087–2088CrossRefGoogle Scholar
  2. 120.
    Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sign Process 20:11–26CrossRefGoogle Scholar
  3. 121.
    Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2004) Novel two OTRA-based grounded immittance simulator topologies. Analog Integr Circ Sign Process 39:169–175CrossRefGoogle Scholar
  4. 122.
    Hou CL, Chien HC, Lo YK (2005) Square wave generators employing OTRAs. IEE Proc Circ Devices Syst 152:718–722CrossRefGoogle Scholar
  5. 123.
    Lo YK, Chien HC (2006) Current-mode monostable multivibrators using OTRAs. IEEE Trans Circ Syst II 53:1274–1278CrossRefGoogle Scholar
  6. 124.
    Kilinc S, Salama KN, Cam U (2006) Realization of fully controllable negative inductance with single operational transresistance amplifier. Circ Syst Sign Process 5(1):47–57zbMATHCrossRefGoogle Scholar
  7. 125.
    Chen JJ, Tsao HW, Liu SI, Chiu W (1995) Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proc Circ Devices Syst 142:186–192CrossRefGoogle Scholar
  8. 126.
    Lo YK, Chien HC (2007) Switch-controllable OTRA-based square/triangular waveform generator. IEEE Trans Circ Syst II 54:1110–1114Google Scholar
  9. 127.
    Lo YK, Chien HC (2007) Single OTRA-based current-mode monostable multivibrator with two triggering modes and a reduced recovery time. IET Circ Devices Syst 1:257–261CrossRefGoogle Scholar
  10. 128.
    Lo YK, Chien HC, Chiu HJ (2008) Switch-controllable OTRA-based bistable multivibrator. IET Circ Devices Syst 2:373–382CrossRefGoogle Scholar
  11. 129.
    Lo YK, Chien HC, Chiu HJ (2010) Current-input OTRA Schmitt trigger with dual hysteresis modes. Int J Circ Theory Appl 38:739–746zbMATHCrossRefGoogle Scholar
  12. 130.
    Sanchez-Lopez C, Martinez-Romero E, Tlelo-Cuautle E (2011) Symbolic analysis of OTRAs-based circuits. J Appl Res Technol 9:69–80Google Scholar
  13. 131.
    Gupta A, Senani R, Bhaskar DR, Singh AK (2011) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circ Syst Sign Process 31:489–499MathSciNetCrossRefGoogle Scholar

VII. Use of CFOA in Realizing Differential Input and Buffered Trans-Conductance Amplifier (DBTA)

  1. 132.
    Herencsar N, Vrba K, Koton J, Lattenberg I (2009) The conception of differential-input buffered and transconductance amplifier (DBTA) and its application. IEICE Electron Express 6(6):329–334CrossRefGoogle Scholar
  2. 133.
    Herencsar N, Koton J, Vrba K, Lahiri A (2009) New voltage-mode quadrature oscillator employing single DBTA and only grounded passive elements. IEICE Electron Express 6:1708–1714CrossRefGoogle Scholar
  3. 134.
    Herencsar N, Koton J, Vrba K, Lattenberg I (2010) New voltage-mode universal filter and sinusoidal oscillator using only single DBTA. Int J Electron 97:365–379CrossRefGoogle Scholar

VIII. Current Differencing Transconductance Amplifier (CDTA) Using CFOAs

  1. 135.
    Biolek D (2003) CDTA-building block for current-mode analog signal processing. Proc ECCTD’03, Krakow, Poland III, pp 397–400Google Scholar
  2. 136.
    Bekri AT, Anday F (2005) nth-order low-pass filter employing current differencing transconductance amplifiers. Proc 2005 European Conf Circ Theor Appl 2:II/193-II/196Google Scholar
  3. 137.
    Tangsrirat W (2007) Current differencing transconductance amplifier-based current-mode four-phase quadrature oscillator. Indian J Eng Mater Sci 14:289–294Google Scholar
  4. 138.
    Prasad D, Bhaskar DR, Singh AK (2008) Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans Electron 5:257–259Google Scholar
  5. 139.
    Silapan P, Siripruchyanum M (2011) Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integr Circ Sign Process 68:111–128CrossRefGoogle Scholar
  6. 140.
    Lahiri A (2010) Resistor-less mixed-mode quadrature sinusoidal oscillator. Int J Comput Electr Eng 2:63–66CrossRefGoogle Scholar

IX. Current Follower Transconductance Amplifier (CFTA) Realized with CFOAs

  1. 141.
    Herencsar N, Koton J, Vrba K, Misurec J (2009) A novel current-mode SIMO type universal filter using CFTAs. Contemp Eng Sci 2:59–66Google Scholar
  2. 142.
    Herencsar N, Koton J, Vrba K (2010) Realization of current-mode KHN-equivalent biquad using current follower transconductance amplifiers (CFTAs). IEICE Trans Fundam E93:1816–1819CrossRefGoogle Scholar

X. CFOA Realizations of Current-Controlled Current Conveyor Transconductance Amplifier (CCCC-TA)

  1. 143.
    Siripruchyanun M, Jaikla W (2007) Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr Eng 19:443–453Google Scholar
  2. 144.
    Maheshwari S, Singh SV, Chauhan DS (2011) Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circ Devices Syst 5(3):149–158CrossRefGoogle Scholar

XI. Voltage-Differencing Differential-Input Buffered Amplifier (VD-DIBA) Realized with CFOAs

  1. 145.
    Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32Google Scholar
  2. 146.
    Prasad D, Bhaskar DR, Pushkar KL (2011) Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active passive Electron Compon: Article ID 101432Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Jamia Millia Islamia, Electronics and Communication Engineering, F/O Engineering and TechnologyNew DelhiIndia
  3. 3.Electronics and Communication EngineeringHRCT Group of Institutions, F/O Engineering and TechnologyMota, GhaziabadIndia
  4. 4.Department of Electronics EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations