Miscellaneous Linear and Nonlinear Applications of CFOAs

Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter deals with miscellaneous linear and nonlinear applications of CFOAs which include electronically-variable gain amplifier, cable driver, video distribution amplifier, a variety of Schmitt Triggers, nonlinear wave form generators, Precision rectifiers, Analog divider, Pseudo exponential circuits and both autonomous and non-autonomous chaotic non-linear circuits.


Schmitt Trigger Wave Form Generator Precision Rectifier Parallel Division Straight Forward Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Data sheet of 60 MHz 2000V/μS Monolithic Op Amp AD844. Analog Devices, Inc. 1983–2011Google Scholar
  2. 2.
    Di Cataldo G, Palumbo G, Pennisi S (1995) A Schmitt trigger by means of a CCII+. Int J Circ Theor Appl 23:61–165Google Scholar
  3. 3.
    Abuelma’atti MT, Al-absi MA (2005) A current conveyor-based relaxation oscillator as a versatile electronic interface for capacitive and resistive sensors. Int J Electron 92:473–477CrossRefGoogle Scholar
  4. 4.
    Srinivasulu A (2011) A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. Int J Circ Theor Appl 39:679–686CrossRefGoogle Scholar
  5. 5.
    Haque AKMS, Hossain MM, Davis WA, Russel Jr HT, Carter RL (2008) Design of sinusoidal, triangular, and square wave generator using current feedback operational amplifier (CFOA). Region 5 Conference IEEE. pp 1–5Google Scholar
  6. 6.
    Minaei S, Yuce E (2012) A simple Schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circ Syst Sign Process 31:877–888CrossRefGoogle Scholar
  7. 7.
    Abuelma’atti MT, Al-Shahrani SM (1998) New CFOA-based triangular/square wave generator. Int J Electron 84:583–588CrossRefGoogle Scholar
  8. 8.
    Khan AA, El-Ela MA, Al-Turaigi (1995) Current-mode precision rectification. Int J Electron 79:853–859CrossRefGoogle Scholar
  9. 9.
    Liu SI (1995) Square-rooting and vector summation circuits using current conveyors. IEE Proc Circ Devices Syst 142:223–226CrossRefGoogle Scholar
  10. 10.
    Liu SI, Chen JJ (1995) Realization of analogue divider using current feedback amplifiers. IEE Proc Circ Devices Syst 142:45–48CrossRefGoogle Scholar
  11. 11.
    Maundy B, Gift S (2005) Novel pseudo-exponential circuits. IEEE Trans Circuits Syst-II 52:675–679CrossRefGoogle Scholar
  12. 12.
    Chua LO (1992) The genesis of Chua’s circuit. Archiv Elektronik Uebertragungstechnik 46:250–257Google Scholar
  13. 13.
    Senani R, Gupta SS (1998) Implementation of Chua’s chaotic circuit using current feedback op-amps. Electron Lett 34:829–830CrossRefGoogle Scholar
  14. 14.
    Elwakil AS, Kennedy MP (2000) Improved implementation of Chua’s chaotic oscillator using current feedback Op Amp. IEEE Trans Circ Syst-I 47:76–79CrossRefzbMATHGoogle Scholar
  15. 15.
    Cam U (2004) A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers. Comput Electr Eng 30:281–290CrossRefzbMATHGoogle Scholar
  16. 16.
    Kilic R (2007) Mixed-mode chaotic circuit with Wien-bridge configuration: the results of experimental verification. Chaos Solitons Fractals 32:1188–1193CrossRefGoogle Scholar
  17. 17.
    Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback op-amps. Frequenz 52:196–206CrossRefGoogle Scholar
  18. 18.
    Elwakil AS, Kennedy MP (1999) A family of Colpitts-like chaotic oscillators. J Franklin Inst 336:687–700CrossRefzbMATHGoogle Scholar
  19. 19.
    Elwakil AS, Kennedy MP (1999) Chaotic oscillators derived from Saito’s double-screw hysteresis oscillator. IEICE Trans Fundament E82-A:1769–1775Google Scholar
  20. 20.
    Mahmoud SA, Elwakil AS, Soliman AM (1999) CMOS current feedback op amp-based chaos generators using novel active nonlinear voltage controlled resistors with odd symmetrical characteristics. Int J Electron 86:1441–1451CrossRefGoogle Scholar
  21. 21.
    Elwakil AS, Kennedy MP (1999) Inductor less hyper chaos generator. Microelectron J 30:739–743CrossRefGoogle Scholar
  22. 22.
    Elwakil AS, Kennedy MP (2000) Chua’s circuit decomposition: a systematic design approach for chaotic oscillators. J Franklin Inst 337:251–265CrossRefzbMATHGoogle Scholar
  23. 23.
    Elwakil AS, Kennedy MP (2000) Novel chaotic oscillator configuration using a diode-inductor composite. Int J Electron 87:397–406CrossRefGoogle Scholar
  24. 24.
    Elwakil AS, Kennedy MP (2001) Construction of classes of circuit-independent chaotic oscillator using passive-only nonlinear devices. IEEE Trans Circ Syst-I 48:289–307MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Elwakil AS, Ozoguz S, Kennedy MP (2002) Creation of a complex butterfly attractor using a novel Lorenz-type system. IEEE Trans Circ Syst-I 49:527–530MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bernat P, Balaz I (2002) RC autonomous circuits with chaotic behavior. Radioengineering 11:1–5Google Scholar
  27. 27.
    Ozoguz S, Elwakil AS, Salama KN (2002) n-scroll chaos generator using nonlinear transconductor. Electron Lett 38:685–686CrossRefGoogle Scholar
  28. 28.
    Ozoguz S, Elwakil AS, Kennedy MP (2002) Experimental verification of the butterfly attractor in a modified Lorenz system. Int J Bifurcation Chaos 12:1627–1632CrossRefzbMATHGoogle Scholar
  29. 29.
    Elwakil AS (2002) Non-autonomous pulse-driven chaotic oscillator based on Chua’s circuit. Microelectron J 33:479–486CrossRefGoogle Scholar
  30. 30.
    Kilic R (2003) On current feedback operational amplifier-based realizations of Chua’s circuit. Circ Syst Sign Process 22:475–491MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yalcin ME, Suykens JAK, Vandewalle J (2004) True random bit generation from a double-scroll attractor. IEEE Trans Circ Syst-I 51:1395–1404MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Elwakil AS (2004) Integrator-based circuit-independent chaotic oscillator structure. CHAOS 14:364–369CrossRefGoogle Scholar
  33. 33.
    Ozoguz S, Elwakil AS (2004) On the realization of circuit-independent non-autonomous pulse-excited chaotic oscillator circuits. IEEE Trans Circuits Syst-II 51:552–556CrossRefGoogle Scholar
  34. 34.
    Cam U, Kilic R (2005) Inductor less realization of non-autonomous MLC chaotic circuit using current-feedback operational amplifiers. J Circ Syst Comput 14:99–107CrossRefGoogle Scholar
  35. 35.
    Cuautle ET, Hernandez AG, Delgado JG (2006) Implementation of a chaotic oscillator by designing Chua’s diode with CMOS CFOAs. Analog Integr Circ Sign Process 48:159–162CrossRefGoogle Scholar
  36. 36.
    Kilic R, Karauz B (2007) Implementation of a laboratory tool for studying mixed-mode chaotic circuit. Int J Bifurcation Chaos 17:3633–3638CrossRefzbMATHGoogle Scholar
  37. 37.
    Srisuchinwong B, Liou CH (2007) Improved implementation of Sprott’s chaotic oscillators based on current-feedback op-amps. ECTI-CON:38–44Google Scholar
  38. 38.
    Petrzela J, Sotner R, Slezak J (2009) Electronically adjustable mixed-mode implementations of the jerk functions. Contemp Eng Sci 2:441–449Google Scholar
  39. 39.
    Elwakil AS, Ozoguz S (2006) On the generation of higher order chaotic oscillators via passive coupling of two identical or non-identical sinusoidal oscillators. IEEE Trans Circ Syst-I 53:1521–1532CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Jamia Millia Islamia, Electronics and Communication Engineering, F/O Engineering and TechnologyNew DelhiIndia
  3. 3.Electronics and Communication EngineeringHRCT Group of Institutions, F/O Engineering and TechnologyMota, GhaziabadIndia
  4. 4.Department of Electronics EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations