Advertisement

Synthesis of Sinusoidal Oscillators Using CFOAs

Chapter
  • 2.1k Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

After briefly outlining the history of the evolution of single element controlled oscillators, the advantages of realizing a Wien-bridge Oscillator using a CFOA have been brought out. Due to significant advantages offered by CFOA-based sinusoidal oscillators, a variety of prominent single resistance controlled oscillators (SRCO) have been described which include single CFOA-based SRCOs, two-CFOA-two-grounded-capacitors based SRCOs (synthesized through a systematic state variable methodology), quadrature SRCOs, Active-R SRCOs, SRCOs with explicit current output and fully-uncoupled SRCOs. Also included are a variety of voltage controlled oscillators (VCO) using CFOAs employing FET-based VCOs as well as analog multiplier (AM)-based VCOs (which also have been systematically derived using the state variable methodology). Various characteristic features and advantages of all the discussed topologies have been highlighted and a number of ideas for further research have been pointed out.

Keywords

Voltage Control Oscillator Sinusoidal Oscillator Current Difference Transconductance Amplifier Analog Multiplier Open Loop Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hribsek M, Newcomb RW (1976) VCO controlled by one variable resistor. IEEE Trans Circ Syst 23:166–169CrossRefGoogle Scholar
  2. 2.
    Soliman AM, Awad SS (1978) A novel sine-wave generator using a single operational amplifier. Proc IEEE 66:253–254CrossRefGoogle Scholar
  3. 3.
    Senani R (1979) New canonic sinusoidal oscillator with independent frequency control through a single grounded resistor. Proc IEEE 67:691–692CrossRefGoogle Scholar
  4. 4.
    Pyara VP, Dutta Roy SC, Jamuar SS (1983) Identification and design of single amplifier single resistance controlled oscillators. IEEE Trans Circ Syst 30:176–181CrossRefGoogle Scholar
  5. 5.
    Bhattacharyya BB, Darkani MT (1984) A unified approach to the realization of canonic RC-active, single as well as variable, frequency oscillators using operational amplifiers. J Franklin Inst 317:413–439CrossRefGoogle Scholar
  6. 6.
    Singh V (2001) Realisation of operational floating amplifier based 1-op-amp based sinusoidal oscillators. IEEE Trans Circ Syst 48:377–381CrossRefGoogle Scholar
  7. 7.
    Singh V (1980) Novel sinusoidal oscillator employing grounded capacitors. Electron Lett 16:757–758CrossRefGoogle Scholar
  8. 8.
    Dutta Roy SC, Pyara VP (1979) Single element controlled oscillators: a network synthetic approach. Proc IEEE 67:1565–1566CrossRefGoogle Scholar
  9. 9.
    Senani R (1988) Analysis, synthesis and design of new types of RC-active sinusoidal oscillators. Part I and part II. Frequenz 42(223–228):251–256Google Scholar
  10. 10.
    Martinez PA, Sabadell J, Aldea C (1997) Grounded resistor controlled sinusoidal oscillator using CFOAs. Electron Lett 33:346–348CrossRefGoogle Scholar
  11. 11.
    Senani R (1980) Novel sinusoidal oscillator employing grounded capacitors. Electron Lett 16:62–63CrossRefGoogle Scholar
  12. 12.
    Senani R (1994) On equivalent forms of single op-amp sinusoidal RC oscillators. IEEE Trans Circ Syst-I 41:617–624CrossRefGoogle Scholar
  13. 13.
    Martinez PA, Celma S, Sabadell J (1996) Designing sinusoidal oscillators with current-feedback amplifiers. Int J Electron 80:637–646CrossRefGoogle Scholar
  14. 14.
    Celma S, Martinez PA, Carlosena A (1994) Current feedback amplifiers based sinusoidal oscillators. IEEE Trans Circ Syst-I 41:906–908CrossRefGoogle Scholar
  15. 15.
    Singh VK, Sharma RK, Singh AK, Bhaskar DR, Senani R (2005) Two new canonic single-CFOA oscillators with single resistor controls. IEEE Trans Circ Syst-II 52:860–864CrossRefGoogle Scholar
  16. 16.
    Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback op-amps. Frequenz 52:196–206CrossRefGoogle Scholar
  17. 17.
    Soliman AM (1996) Applications of current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302Google Scholar
  18. 18.
    Celma S, Martinez PA, Carlosena A (1994) Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Proc Circ Devices Syst 141:493–497CrossRefGoogle Scholar
  19. 19.
    Senani R, Singh VK (1996) Comment: synthesis of canonic single-resistance-controlled-oscillators using a single current-feedback-amplifier. IEE Proc Circ Devices Syst 143:71–72CrossRefzbMATHGoogle Scholar
  20. 20.
    Liu SI, Shih CS, Wu DS (1994) Sinusoidal oscillators with single element control using a current-feedback amplifier. Int J Electron 77:1007–1013CrossRefGoogle Scholar
  21. 21.
    Abuelma’atti MT, Farooqi AA, Al-Shahrani SM (1996) Novel RC oscillators using the current-feedback operational amplifier. IEEE Trans Circ Syst-I 43:155–157CrossRefGoogle Scholar
  22. 22.
    Liu SI, Tsay JH (1996) Single-resistance-controlled sinusoidal oscillator using current-feedback amplifiers. Int J Electron 80:661–664CrossRefGoogle Scholar
  23. 23.
    Abuelma’atti MT, Al-Shahrani SM (1996) A novel low-component count single-element-controlled sinusoidal oscillator using the CFOA pole. Int J Electron 80:747–752CrossRefGoogle Scholar
  24. 24.
    Soliman AM (2000) Three oscillator families using the current feedback op-amp. Frequenz 54:126–131CrossRefGoogle Scholar
  25. 25.
    Senani R, Singh VK (1996) Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Trans Circ Syst-I 43:698–700CrossRefGoogle Scholar
  26. 26.
    Abuelma’atti MT, Farooqi AA (1996) A novel single-element controlled oscillator using the current-feedback-operational amplifier pole. Frequenz 50:183–184Google Scholar
  27. 27.
    Toker A, Cicekoglu O, Kuntman H (2002) On the oscillator implementations using a single current feedback op-amp. Comput Electr Eng 28:375–389CrossRefzbMATHGoogle Scholar
  28. 28.
    Gunes EO, Toker A (2002) On the realization of oscillators using state equations. Int J Electron Commun 56:317–326CrossRefGoogle Scholar
  29. 29.
    Martinez PA, Sanz BMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92:619–629CrossRefGoogle Scholar
  30. 30.
    Abuelma’atti MT, Al-Ghazwani A (2000) New quartz crystal oscillators using the current-feedback operational amplifier. Active Passive Electron Comp 23:131–136CrossRefGoogle Scholar
  31. 31.
    Hou CL, Wang WY (1997) Circuit transformation method from OTA-C circuits into CFA-based RC circuits. IEE Proc Circ Devices Syst 144:209–212CrossRefGoogle Scholar
  32. 32.
    Wu DS, Liu SI, Hwang YS, Wu YP (1995) Multiphase sinusoidal oscillator using the CFOA pole. IEE Proc Circ Devices Syst 142:37–40CrossRefGoogle Scholar
  33. 33.
    Abuelma’atti MT, Al-Shahrani AM (1998) Novel CFOA-based sinusoidal oscillators. Int J Electron 85:437–441CrossRefGoogle Scholar
  34. 34.
    Liu SI, Chang CC, Wu DS (1994) Active-R sinusoidal oscillator using the CFA pole. Int J Electron 77:1035–1042CrossRefGoogle Scholar
  35. 35.
    Abuelma’atti MT, Al-Shahrani SM (1997) New CFOA-based grounded-capacitor single-element-controlled sinusoidal oscillator. Active Passive Electron Comp 20:119–124CrossRefGoogle Scholar
  36. 36.
    Senani R, Gupta SS (1997) Synthesis of single-resistance-controlled oscillators using CFOAs: simple state-variable approach. IEE Proc Circ Devices Syst 144:104–106CrossRefGoogle Scholar
  37. 37.
    Gupta SS, Senani R (1998) State variable synthesis of single-resistance-controlled grounded capacitor oscillator oscillators using only two CFOAs. IEE Proc Circ Devices Syst 145:135–138CrossRefGoogle Scholar
  38. 38.
    Gupta SS, Senani R (1998) State variable synthesis of single-resistance-controlled grounded capacitor oscillator oscillators using only two CFOAs: additional new realizations. IEE Proc Circ Devices Syst 145:415–418CrossRefGoogle Scholar
  39. 39.
    Abuelma’atti MT, Al-Zaher HA (1998) New grounded-capacitor sinusoidal oscillators using the current-feedback-amplifier pole. Active Passive Electron Comp 21:23–32CrossRefGoogle Scholar
  40. 40.
    Abuelma’atti MT, Al-Shahrani SM (1997) New CFOA-based sinusoidal oscillators. Int J Electron 82:27–32CrossRefGoogle Scholar
  41. 41.
    Elwakil AS (1998) Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans Instrument Measure 47:584–586CrossRefGoogle Scholar
  42. 42.
    Soliman AM (2000) Current feedback operational amplifier based oscillators. Analog Integr Circ Sign Process 23:45–55CrossRefGoogle Scholar
  43. 43.
    Singh AK, Senani R (2001) Active-R design using CFOA-poles: new resonators, filters and oscillators. IEEE Trans Circ Syst-II 48:504–511CrossRefGoogle Scholar
  44. 44.
    Bhaskar DR (2003) Realization of second-order sinusoidal oscillator/filters with non-interacting controls using CFAs. Frequenz 57:12–14CrossRefGoogle Scholar
  45. 45.
    Abuelma’atti MT, Al-Shahrani SM (2003) Synthesis of a novel low-component programmable sinusoidal oscillator. Active Passive Electron Comp 26:31–36CrossRefGoogle Scholar
  46. 46.
    Bhaskar DR, Prasad D, Imam SA (2004) Grounded-capacitor SRCOs realized through a simple general scheme. Frequenz 58:175–177CrossRefGoogle Scholar
  47. 47.
    Senani R, Sharma RK (2005) Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp. IEICE Electron Express 2:14–18CrossRefGoogle Scholar
  48. 48.
    Bhaskar DR, Senani R (2006) New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans Instrument Measure 55:2014–2021CrossRefGoogle Scholar
  49. 49.
    Nandi R (2008) Tunable active-R oscillator using a CFA. IEICE Electron Express 5(8):248–253CrossRefGoogle Scholar
  50. 50.
    Gupta SS, Bhaskar DR, Senani R (2009) New voltage controlled oscillators using CFOAs. Int J Electron Commun 63:209–217CrossRefGoogle Scholar
  51. 51.
    Tangsrirat W, Surakampontorn W (2009) Single-resistance-controlled quadrature oscillator and universal biquad filter using CFOAs. Int J Electron Commun 63:1080–1086CrossRefGoogle Scholar
  52. 52.
    Soliman AM (2010) Transformation of oscillators using Op amps, unity gain cells and CFOA. Analog Integr Circ Sign Process 65:105–114CrossRefGoogle Scholar
  53. 53.
    Koren V (2002) RF oscillator uses current-feedback op-amp. EDN:83–84Google Scholar
  54. 54.
    Soliman AM (2011) Transformation of a floating capacitor oscillator to a family of grounded capacitor oscillators. Int J Electron 98:289–300CrossRefGoogle Scholar
  55. 55.
    Abuelma’atti MT (2010) Identification of a class of two CFOA-based sinusoidal RC oscillators. Analog Integr Circ Sign Process 65:419–428CrossRefGoogle Scholar
  56. 56.
    Wangenheim LV (2011) Comment on ‘Identification of a class of two CFOA-based sinusoidal RC oscillators’. Analog Integr Circ Sign Process 67:117–119CrossRefGoogle Scholar
  57. 57.
    Abuelma’atti MT (2012) Reply to comment on “Identification of class of two CFOA-based sinusoidal RC oscillators”. Analog Integr Circ Sign Process 71:155–157CrossRefGoogle Scholar
  58. 58.
    Lahiri A, Jaikla W, Siripruchyanun M (2011) Explicit-current-output second-order sinusoidal oscillators using two CFOA’s and grounded capacitors. Int J Electron Commun 65:669–672CrossRefGoogle Scholar
  59. 59.
    Bhaskar DR, Gupta SS, Senani R, Singh AK (2012) New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integr Circ Sign Process 73:427–437CrossRefGoogle Scholar
  60. 60.
    Bhaskar DR, Senani R, Singh AK (2010) Linear sinusoidal VCOs: new configurations using current feedback op-amps. Int J Electron 97:263–272CrossRefGoogle Scholar
  61. 61.
    Bhaskar DR, Senani R, Singh AK, Gupta SS (2010) Two simple analog multiplier based linear VCOs using a single current feedback Op-amp. Circ Syst 1:1–4CrossRefGoogle Scholar
  62. 62.
    Martinez PA, Sabadell J, Aldea C, Celma S (1999) Variable frequency sinusoidal oscillators based on CCII+. IEEE Trans Circ Syst-I 46:1386–1390CrossRefGoogle Scholar
  63. 63.
    Gupta SS, Senani R (2003) Realizations of current-mode SRCOs using all grounded passive elements. Frequenz 57:26–37CrossRefGoogle Scholar
  64. 64.
    Gupta SS, Sharma RK, Bhaskar DR, Senani R (2010) Sinusoidal oscillators with explicit current output employing current-feedback op-amps. Int J Circ Theor Appl 38:131–147zbMATHGoogle Scholar
  65. 65.
    Gupta SS, Bhaskar DR, Senani R (2011) Synthesis of linear VCOs: the state-variable approach. J Circ Syst Comput 20:587–606CrossRefGoogle Scholar
  66. 66.
    Gupta SS, Bhaskar DR, Senani R (2012) Synthesis of new single CFOA-based VCOs incorporating the voltage summing property of analog multipliers. ISRN Electron: Article ID 463680, 8 pGoogle Scholar
  67. 67.
    Mahmoud SA, Soliman AM (2000) Novel MOS-C oscillators using the current feedback op-amp. Int J Electron 87:269–280CrossRefGoogle Scholar
  68. 68.
    Nay K, Budak A (1983) A voltage-controlled-resistance with wide dynamic range and low distortion. IEEE Trans Circ Syst 30:770–772CrossRefGoogle Scholar
  69. 69.
    Senani R (1994) Realization of linear voltage-controlled resistance in floating form. Electron Lett 30:1909–1911CrossRefGoogle Scholar
  70. 70.
    Gupta SS (2005) Realization of some class of linear/nonlinear analog electronic circuits using current-mode building blocks. Ph.D. thesis. Faculty of Technology, University of DelhiGoogle Scholar
  71. 71.
    Natarajan S (1989) Measurement of capacitances and their loss factors. IEEE Trans Instrument Measure 38:1083–1087CrossRefGoogle Scholar
  72. 72.
    Ahmad W (1986) A new simple technique for capacitance measurement. IEEE Trans Instrument Measure 35:640–642CrossRefGoogle Scholar
  73. 73.
    Awad SS (1988) Capacitance measurement based on an operational amplifier circuit: error determination and reduction. IEEE Trans Instrument Measure 37:379–382CrossRefGoogle Scholar
  74. 74.
    Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664CrossRefGoogle Scholar
  75. 75.
    Fongsamut C, Anuntahirunrat K, Kumwachara K, Surakampontorn W (2006) Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators. Int J Electron 93:467–478CrossRefGoogle Scholar
  76. 76.
    Senani R, Gupta SS (2000) Novel SRCOs using first generation current conveyor. Int J Electron 87:1187–1192CrossRefGoogle Scholar
  77. 77.
    Kilinc S, Jain V, Aggarwal V, Cam U (2006) Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential-difference-complementary-current-conveyor. Frequenz 60:142–146CrossRefGoogle Scholar
  78. 78.
    Gupta SS, Senani R (2005) Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier. IEE Proc Circ Devices Syst 152:38–48CrossRefGoogle Scholar
  79. 79.
    Gupta SS, Senani R (2006) New single resistance controlled oscillator configurations using unity-gain cells. Analog Integr Circ Sign Process 46:111–119CrossRefGoogle Scholar
  80. 80.
    Moon G, Zaghloul ME, Newcomb RW (1990) An enhancement-mode MOS voltage-controlled linear resistor with large dynamic range. IEEE Trans Circ Syst 37:1284–1288CrossRefGoogle Scholar
  81. 81.
    Elwan HO, Mahmoud SA, Soliman AM (1996) CMOS voltage-controlled floating resistor. Int J Electron 81:571–576CrossRefGoogle Scholar
  82. 82.
    Al-Shahrani SM (2007) CMOS wideband auto-tuning phase shifter cir cuit. Electron Lett 43:804–806CrossRefGoogle Scholar
  83. 83.
    Senani R, Bhaskar DR, Tripathi MP (1993) On the realization of linear sinusoidal VCOs. Int J Electron 74:727–733CrossRefGoogle Scholar
  84. 84.
    Senani R, Bhaskar DR (1996) New active-R sinusoidal VCOs with linear tuning laws. Int J Electron 80:57–61CrossRefGoogle Scholar
  85. 85.
    Bhaskar DR, Tripathi MP (2000) Realization of novel linear Sinusoidal VCOs. Analog Integr Circ Sign Process 24:263–267CrossRefGoogle Scholar
  86. 86.
    Singh VK (2004) Realization of a class of analog signal processing/signal generation circuits. Ph.D. thesis. Uttar Pradesh Technical University, LucknowGoogle Scholar
  87. 87.
    Soliman AM, Awad SS (1978) A canonical voltage controlled oscillator realized using a single operational amplifier. Frequenz 32:153–154Google Scholar
  88. 88.
    Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sign Process 35:79–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Jamia Millia Islamia, Electronics and Communication Engineering, F/O Engineering and TechnologyNew DelhiIndia
  3. 3.Electronics and Communication EngineeringHRCT Group of Institutions, F/O Engineering and TechnologyMota, GhaziabadIndia
  4. 4.Department of Electronics EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations