Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

After briefly outlining the history of the evolution of single element controlled oscillators, the advantages of realizing a Wien-bridge Oscillator using a CFOA have been brought out. Due to significant advantages offered by CFOA-based sinusoidal oscillators, a variety of prominent single resistance controlled oscillators (SRCO) have been described which include single CFOA-based SRCOs, two-CFOA-two-grounded-capacitors based SRCOs (synthesized through a systematic state variable methodology), quadrature SRCOs, Active-R SRCOs, SRCOs with explicit current output and fully-uncoupled SRCOs. Also included are a variety of voltage controlled oscillators (VCO) using CFOAs employing FET-based VCOs as well as analog multiplier (AM)-based VCOs (which also have been systematically derived using the state variable methodology). Various characteristic features and advantages of all the discussed topologies have been highlighted and a number of ideas for further research have been pointed out.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: http://dx.doi.org/10.1007/978-1-4614-5188-4_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It has come to the attention of the first author only at the time of finalizing this chapter (13–17 September 2012) that a quite similar single op-amp SRCO employing only five resistors and two capacitors, was proposed by Soliman and Awad in 1978 in [87].

  2. 2.

    In spite of the criticism of [88], the current-mode techniques have given way to a number of important analog signal processing/signal generation circuits over the past three decades.

References

  1. Hribsek M, Newcomb RW (1976) VCO controlled by one variable resistor. IEEE Trans Circ Syst 23:166–169

    Article  Google Scholar 

  2. Soliman AM, Awad SS (1978) A novel sine-wave generator using a single operational amplifier. Proc IEEE 66:253–254

    Article  Google Scholar 

  3. Senani R (1979) New canonic sinusoidal oscillator with independent frequency control through a single grounded resistor. Proc IEEE 67:691–692

    Article  Google Scholar 

  4. Pyara VP, Dutta Roy SC, Jamuar SS (1983) Identification and design of single amplifier single resistance controlled oscillators. IEEE Trans Circ Syst 30:176–181

    Article  Google Scholar 

  5. Bhattacharyya BB, Darkani MT (1984) A unified approach to the realization of canonic RC-active, single as well as variable, frequency oscillators using operational amplifiers. J Franklin Inst 317:413–439

    Article  Google Scholar 

  6. Singh V (2001) Realisation of operational floating amplifier based 1-op-amp based sinusoidal oscillators. IEEE Trans Circ Syst 48:377–381

    Article  Google Scholar 

  7. Singh V (1980) Novel sinusoidal oscillator employing grounded capacitors. Electron Lett 16:757–758

    Article  Google Scholar 

  8. Dutta Roy SC, Pyara VP (1979) Single element controlled oscillators: a network synthetic approach. Proc IEEE 67:1565–1566

    Article  Google Scholar 

  9. Senani R (1988) Analysis, synthesis and design of new types of RC-active sinusoidal oscillators. Part I and part II. Frequenz 42(223–228):251–256

    Google Scholar 

  10. Martinez PA, Sabadell J, Aldea C (1997) Grounded resistor controlled sinusoidal oscillator using CFOAs. Electron Lett 33:346–348

    Article  Google Scholar 

  11. Senani R (1980) Novel sinusoidal oscillator employing grounded capacitors. Electron Lett 16:62–63

    Article  Google Scholar 

  12. Senani R (1994) On equivalent forms of single op-amp sinusoidal RC oscillators. IEEE Trans Circ Syst-I 41:617–624

    Article  Google Scholar 

  13. Martinez PA, Celma S, Sabadell J (1996) Designing sinusoidal oscillators with current-feedback amplifiers. Int J Electron 80:637–646

    Article  Google Scholar 

  14. Celma S, Martinez PA, Carlosena A (1994) Current feedback amplifiers based sinusoidal oscillators. IEEE Trans Circ Syst-I 41:906–908

    Article  Google Scholar 

  15. Singh VK, Sharma RK, Singh AK, Bhaskar DR, Senani R (2005) Two new canonic single-CFOA oscillators with single resistor controls. IEEE Trans Circ Syst-II 52:860–864

    Article  Google Scholar 

  16. Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: Novel configurations using current feedback op-amps. Frequenz 52:196–206

    Article  Google Scholar 

  17. Soliman AM (1996) Applications of current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302

    Google Scholar 

  18. Celma S, Martinez PA, Carlosena A (1994) Approach to the synthesis of canonic RC-active oscillators using CCII. IEE Proc Circ Devices Syst 141:493–497

    Article  Google Scholar 

  19. Senani R, Singh VK (1996) Comment: synthesis of canonic single-resistance-controlled-oscillators using a single current-feedback-amplifier. IEE Proc Circ Devices Syst 143:71–72

    Article  MATH  Google Scholar 

  20. Liu SI, Shih CS, Wu DS (1994) Sinusoidal oscillators with single element control using a current-feedback amplifier. Int J Electron 77:1007–1013

    Article  Google Scholar 

  21. Abuelma’atti MT, Farooqi AA, Al-Shahrani SM (1996) Novel RC oscillators using the current-feedback operational amplifier. IEEE Trans Circ Syst-I 43:155–157

    Article  Google Scholar 

  22. Liu SI, Tsay JH (1996) Single-resistance-controlled sinusoidal oscillator using current-feedback amplifiers. Int J Electron 80:661–664

    Article  Google Scholar 

  23. Abuelma’atti MT, Al-Shahrani SM (1996) A novel low-component count single-element-controlled sinusoidal oscillator using the CFOA pole. Int J Electron 80:747–752

    Article  Google Scholar 

  24. Soliman AM (2000) Three oscillator families using the current feedback op-amp. Frequenz 54:126–131

    Article  Google Scholar 

  25. Senani R, Singh VK (1996) Novel single-resistance-controlled-oscillator configuration using current feedback amplifiers. IEEE Trans Circ Syst-I 43:698–700

    Article  Google Scholar 

  26. Abuelma’atti MT, Farooqi AA (1996) A novel single-element controlled oscillator using the current-feedback-operational amplifier pole. Frequenz 50:183–184

    Google Scholar 

  27. Toker A, Cicekoglu O, Kuntman H (2002) On the oscillator implementations using a single current feedback op-amp. Comput Electr Eng 28:375–389

    Article  MATH  Google Scholar 

  28. Gunes EO, Toker A (2002) On the realization of oscillators using state equations. Int J Electron Commun 56:317–326

    Article  Google Scholar 

  29. Martinez PA, Sanz BMM (2005) Generation of two integrator loop variable frequency sinusoidal oscillator. Int J Electron 92:619–629

    Article  Google Scholar 

  30. Abuelma’atti MT, Al-Ghazwani A (2000) New quartz crystal oscillators using the current-feedback operational amplifier. Active Passive Electron Comp 23:131–136

    Article  Google Scholar 

  31. Hou CL, Wang WY (1997) Circuit transformation method from OTA-C circuits into CFA-based RC circuits. IEE Proc Circ Devices Syst 144:209–212

    Article  Google Scholar 

  32. Wu DS, Liu SI, Hwang YS, Wu YP (1995) Multiphase sinusoidal oscillator using the CFOA pole. IEE Proc Circ Devices Syst 142:37–40

    Article  Google Scholar 

  33. Abuelma’atti MT, Al-Shahrani AM (1998) Novel CFOA-based sinusoidal oscillators. Int J Electron 85:437–441

    Article  Google Scholar 

  34. Liu SI, Chang CC, Wu DS (1994) Active-R sinusoidal oscillator using the CFA pole. Int J Electron 77:1035–1042

    Article  Google Scholar 

  35. Abuelma’atti MT, Al-Shahrani SM (1997) New CFOA-based grounded-capacitor single-element-controlled sinusoidal oscillator. Active Passive Electron Comp 20:119–124

    Article  Google Scholar 

  36. Senani R, Gupta SS (1997) Synthesis of single-resistance-controlled oscillators using CFOAs: simple state-variable approach. IEE Proc Circ Devices Syst 144:104–106

    Article  Google Scholar 

  37. Gupta SS, Senani R (1998) State variable synthesis of single-resistance-controlled grounded capacitor oscillator oscillators using only two CFOAs. IEE Proc Circ Devices Syst 145:135–138

    Article  Google Scholar 

  38. Gupta SS, Senani R (1998) State variable synthesis of single-resistance-controlled grounded capacitor oscillator oscillators using only two CFOAs: additional new realizations. IEE Proc Circ Devices Syst 145:415–418

    Article  Google Scholar 

  39. Abuelma’atti MT, Al-Zaher HA (1998) New grounded-capacitor sinusoidal oscillators using the current-feedback-amplifier pole. Active Passive Electron Comp 21:23–32

    Article  Google Scholar 

  40. Abuelma’atti MT, Al-Shahrani SM (1997) New CFOA-based sinusoidal oscillators. Int J Electron 82:27–32

    Article  Google Scholar 

  41. Elwakil AS (1998) Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans Instrument Measure 47:584–586

    Article  Google Scholar 

  42. Soliman AM (2000) Current feedback operational amplifier based oscillators. Analog Integr Circ Sign Process 23:45–55

    Article  Google Scholar 

  43. Singh AK, Senani R (2001) Active-R design using CFOA-poles: new resonators, filters and oscillators. IEEE Trans Circ Syst-II 48:504–511

    Article  Google Scholar 

  44. Bhaskar DR (2003) Realization of second-order sinusoidal oscillator/filters with non-interacting controls using CFAs. Frequenz 57:12–14

    Article  Google Scholar 

  45. Abuelma’atti MT, Al-Shahrani SM (2003) Synthesis of a novel low-component programmable sinusoidal oscillator. Active Passive Electron Comp 26:31–36

    Article  Google Scholar 

  46. Bhaskar DR, Prasad D, Imam SA (2004) Grounded-capacitor SRCOs realized through a simple general scheme. Frequenz 58:175–177

    Article  Google Scholar 

  47. Senani R, Sharma RK (2005) Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp. IEICE Electron Express 2:14–18

    Article  Google Scholar 

  48. Bhaskar DR, Senani R (2006) New CFOA-based single-element-controlled sinusoidal oscillators. IEEE Trans Instrument Measure 55:2014–2021

    Article  Google Scholar 

  49. Nandi R (2008) Tunable active-R oscillator using a CFA. IEICE Electron Express 5(8):248–253

    Article  Google Scholar 

  50. Gupta SS, Bhaskar DR, Senani R (2009) New voltage controlled oscillators using CFOAs. Int J Electron Commun 63:209–217

    Article  Google Scholar 

  51. Tangsrirat W, Surakampontorn W (2009) Single-resistance-controlled quadrature oscillator and universal biquad filter using CFOAs. Int J Electron Commun 63:1080–1086

    Article  Google Scholar 

  52. Soliman AM (2010) Transformation of oscillators using Op amps, unity gain cells and CFOA. Analog Integr Circ Sign Process 65:105–114

    Article  Google Scholar 

  53. Koren V (2002) RF oscillator uses current-feedback op-amp. EDN:83–84

    Google Scholar 

  54. Soliman AM (2011) Transformation of a floating capacitor oscillator to a family of grounded capacitor oscillators. Int J Electron 98:289–300

    Article  Google Scholar 

  55. Abuelma’atti MT (2010) Identification of a class of two CFOA-based sinusoidal RC oscillators. Analog Integr Circ Sign Process 65:419–428

    Article  Google Scholar 

  56. Wangenheim LV (2011) Comment on ‘Identification of a class of two CFOA-based sinusoidal RC oscillators’. Analog Integr Circ Sign Process 67:117–119

    Article  Google Scholar 

  57. Abuelma’atti MT (2012) Reply to comment on “Identification of class of two CFOA-based sinusoidal RC oscillators”. Analog Integr Circ Sign Process 71:155–157

    Article  Google Scholar 

  58. Lahiri A, Jaikla W, Siripruchyanun M (2011) Explicit-current-output second-order sinusoidal oscillators using two CFOA’s and grounded capacitors. Int J Electron Commun 65:669–672

    Article  Google Scholar 

  59. Bhaskar DR, Gupta SS, Senani R, Singh AK (2012) New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances. Analog Integr Circ Sign Process 73:427–437

    Article  Google Scholar 

  60. Bhaskar DR, Senani R, Singh AK (2010) Linear sinusoidal VCOs: new configurations using current feedback op-amps. Int J Electron 97:263–272

    Article  Google Scholar 

  61. Bhaskar DR, Senani R, Singh AK, Gupta SS (2010) Two simple analog multiplier based linear VCOs using a single current feedback Op-amp. Circ Syst 1:1–4

    Article  Google Scholar 

  62. Martinez PA, Sabadell J, Aldea C, Celma S (1999) Variable frequency sinusoidal oscillators based on CCII+. IEEE Trans Circ Syst-I 46:1386–1390

    Article  Google Scholar 

  63. Gupta SS, Senani R (2003) Realizations of current-mode SRCOs using all grounded passive elements. Frequenz 57:26–37

    Article  Google Scholar 

  64. Gupta SS, Sharma RK, Bhaskar DR, Senani R (2010) Sinusoidal oscillators with explicit current output employing current-feedback op-amps. Int J Circ Theor Appl 38:131–147

    MATH  Google Scholar 

  65. Gupta SS, Bhaskar DR, Senani R (2011) Synthesis of linear VCOs: the state-variable approach. J Circ Syst Comput 20:587–606

    Article  Google Scholar 

  66. Gupta SS, Bhaskar DR, Senani R (2012) Synthesis of new single CFOA-based VCOs incorporating the voltage summing property of analog multipliers. ISRN Electron: Article ID 463680, 8 p

    Google Scholar 

  67. Mahmoud SA, Soliman AM (2000) Novel MOS-C oscillators using the current feedback op-amp. Int J Electron 87:269–280

    Article  Google Scholar 

  68. Nay K, Budak A (1983) A voltage-controlled-resistance with wide dynamic range and low distortion. IEEE Trans Circ Syst 30:770–772

    Article  Google Scholar 

  69. Senani R (1994) Realization of linear voltage-controlled resistance in floating form. Electron Lett 30:1909–1911

    Article  Google Scholar 

  70. Gupta SS (2005) Realization of some class of linear/nonlinear analog electronic circuits using current-mode building blocks. Ph.D. thesis. Faculty of Technology, University of Delhi

    Google Scholar 

  71. Natarajan S (1989) Measurement of capacitances and their loss factors. IEEE Trans Instrument Measure 38:1083–1087

    Article  Google Scholar 

  72. Ahmad W (1986) A new simple technique for capacitance measurement. IEEE Trans Instrument Measure 35:640–642

    Article  Google Scholar 

  73. Awad SS (1988) Capacitance measurement based on an operational amplifier circuit: error determination and reduction. IEEE Trans Instrument Measure 37:379–382

    Article  Google Scholar 

  74. Horng JW (2001) A sinusoidal oscillator using current-controlled current conveyors. Int J Electron 88:659–664

    Article  Google Scholar 

  75. Fongsamut C, Anuntahirunrat K, Kumwachara K, Surakampontorn W (2006) Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators. Int J Electron 93:467–478

    Article  Google Scholar 

  76. Senani R, Gupta SS (2000) Novel SRCOs using first generation current conveyor. Int J Electron 87:1187–1192

    Article  Google Scholar 

  77. Kilinc S, Jain V, Aggarwal V, Cam U (2006) Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential-difference-complementary-current-conveyor. Frequenz 60:142–146

    Article  Google Scholar 

  78. Gupta SS, Senani R (2005) Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier. IEE Proc Circ Devices Syst 152:38–48

    Article  Google Scholar 

  79. Gupta SS, Senani R (2006) New single resistance controlled oscillator configurations using unity-gain cells. Analog Integr Circ Sign Process 46:111–119

    Article  Google Scholar 

  80. Moon G, Zaghloul ME, Newcomb RW (1990) An enhancement-mode MOS voltage-controlled linear resistor with large dynamic range. IEEE Trans Circ Syst 37:1284–1288

    Article  Google Scholar 

  81. Elwan HO, Mahmoud SA, Soliman AM (1996) CMOS voltage-controlled floating resistor. Int J Electron 81:571–576

    Article  Google Scholar 

  82. Al-Shahrani SM (2007) CMOS wideband auto-tuning phase shifter cir cuit. Electron Lett 43:804–806

    Article  Google Scholar 

  83. Senani R, Bhaskar DR, Tripathi MP (1993) On the realization of linear sinusoidal VCOs. Int J Electron 74:727–733

    Article  Google Scholar 

  84. Senani R, Bhaskar DR (1996) New active-R sinusoidal VCOs with linear tuning laws. Int J Electron 80:57–61

    Article  Google Scholar 

  85. Bhaskar DR, Tripathi MP (2000) Realization of novel linear Sinusoidal VCOs. Analog Integr Circ Sign Process 24:263–267

    Article  Google Scholar 

  86. Singh VK (2004) Realization of a class of analog signal processing/signal generation circuits. Ph.D. thesis. Uttar Pradesh Technical University, Lucknow

    Google Scholar 

  87. Soliman AM, Awad SS (1978) A canonical voltage controlled oscillator realized using a single operational amplifier. Frequenz 32:153–154

    Google Scholar 

  88. Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sign Process 35:79–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K., Singh, V.K. (2013). Synthesis of Sinusoidal Oscillators Using CFOAs. In: Current Feedback Operational Amplifiers and Their Applications. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5188-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5188-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5187-7

  • Online ISBN: 978-1-4614-5188-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics