Design of Filters Using CFOAs

Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter deals with the application of CFOAs in filter design. We first present a number of multifunction voltage-mode and current-mode biquad filter topologies employing two to five CFOAs choosing from a large number of existing configurations. In the category of voltage-mode filters, both single input multiple output (SIMO) type as well as multiple input single output (MISO) type configurations have been included and their significant features have been highlighted. However, in the category of current-mode filters, only MISO-type universal biquad filters have been included since no SIMO-type CFOA-based biquads are known to exist till now. Subsequently, a number of universal, mixed-mode biquads capable of realizing all the five standard filter functions in all the four possible modes, namely, VM, CM, trans-impedance and trans-admittance have been highlighted. This is followed by active-R multi-function biquads, inverse active filters, MOSFETs-C filters and the design of higher order filter employing CFOAs in which case doubly-terminated wave active filters based upon LC ladder proto-types and higher order modular filter structures are described in detail. Finally, a number of ideas for further research have also been indicated.


Current Mode Band Pass Voltage Mode Equivalent Resistance Spice Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ibrahim MA, Minaei S, Kuntman H (2005) A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59:311–318CrossRefGoogle Scholar
  2. 2.
    Soliman AM (1998) Generation of CCII and CFOA filters from passive RLC filters. Int J Electron 85:293–312CrossRefGoogle Scholar
  3. 3.
    Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback op-amps. Frequenz 52:196–206CrossRefGoogle Scholar
  4. 4.
    Bhaskar DR (2003) Realisation of second-order sinusoidal oscillator/filters with non-interacting Controls using CFAs. Frequenz 57:1–3CrossRefGoogle Scholar
  5. 5.
    Chang CM, Hwang CS, Tu SH (1994) Voltage-mode notch, low pass and band pass filter using current-feedback amplifiers. Electron Lett 30:2022–2023CrossRefGoogle Scholar
  6. 6.
    Singh AK, Senani R (2005) CFOA-based state-variable biquad and its high-frequency compensation. IEICE Electron Express 2:232–238CrossRefGoogle Scholar
  7. 7.
    Soliman AM (1996) Applications of current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302Google Scholar
  8. 8.
    Abuelma’atti MT, Al-Zaher HA (1998) New universal filter with one input and five outputs using current-feedback amplifiers. Analog Integr Circ Sign Process 16:239–244CrossRefGoogle Scholar
  9. 9.
    Abuelma’atti MT, Al-Zaher HA (1998) New universal filter with one input and five outputs using current-feedback amplifiers. Proc Natl Sci Counc ROC (A) 22:504–508Google Scholar
  10. 10.
    Horng JW, Chang CK, Chu JM (2002) Voltage-mode universal biquadratic filter using single current-feedback amplifier. IEICE Trans Fundament E85-A:1970–1973Google Scholar
  11. 11.
    Abuelma’atti MT, Al-Shahrani SM (1996) New universal filter using two current-feedback amplifiers. Int J Electron 80:753–756CrossRefGoogle Scholar
  12. 12.
    Abuelma’atti MT, Al-Zaher HA (1997) New universal filter using two current-feedback amplifiers. Active Passive Electron Comp 20:111–117CrossRefGoogle Scholar
  13. 13.
    Liu SI, Wu DS (1995) New current-feedback amplifier-based universal biquadratic filter. IEEE Trans Instrum Meas 44:915–917CrossRefGoogle Scholar
  14. 14.
    Wu DS, Lee HT, Hwang YS, Wu YP (1994) CFA-based universal filter deduced from a mason graph. Int J Electron 77:1059–1065CrossRefGoogle Scholar
  15. 15.
    Liu SI (1995) High input impedance filters with low components spread using current-feedback amplifiers. Electron Lett 31:1042–1043CrossRefGoogle Scholar
  16. 16.
    Topaloglu S, Sagbas M, Anday F (2012) Three-input single-output second-order filters using current-feedback amplifiers. Int J Electron Commun (AEU) 66:683–686CrossRefGoogle Scholar
  17. 17.
    Nikoloudis S, Psychalinos C (2010) Multiple input single output universal biquad filer with current feedback operational amplifiers. Circ Syst Sig Process 29:1167–1180CrossRefzbMATHGoogle Scholar
  18. 18.
    Horng JW, Chou PY, Wu JU (2010) Voltage/Current-mode multifunction filters using current-feedback amplifiers and grounded capacitors. Active Passive Electron Comp 5:785631. doi: 10.1155/2010/785631
  19. 19.
    Sharma RK, Senani R (2003) Multifunction CM/VM biquads realized with a single CFOA and grounded capacitors. Int J Electron Commun (AEU) 57:301–308CrossRefGoogle Scholar
  20. 20.
    Sharma RK, Senani R (2004) On the realization of universal current mode biquads using a single CFOA. Analog Integr Circ Sign Process 41:65–78CrossRefGoogle Scholar
  21. 21.
    Sharma RK, Senani R (2004) Universal current mode biquad using a single CFOA. Int J Electron 91:175–183CrossRefGoogle Scholar
  22. 22.
    Chang CM, Soliman AM, Swamy MNS (2007) Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII-grounded R and C All-pass filter structures. IEEE Trans Circ Syst-I 54:1430–1443CrossRefGoogle Scholar
  23. 23.
    Singh VK, Singh AK, Bhaskar DR, Senani R (2005) Novel mixed-mode universal biquad configuration. IEICE Electron Express 2:548–553CrossRefGoogle Scholar
  24. 24.
    Toumazou C, Payne A, Pookaiyaudom S (1995) The active-R filter technique applied to current-feedback op-amps. IEEE Int Symp Circ Syst 2:1203–1206Google Scholar
  25. 25.
    Singh AK, Senani R (2001) Active-R design using CFOA-poles: new resonators, filters, and oscillators. IEEE Trans Circ Syst-II 48:504–511CrossRefGoogle Scholar
  26. 26.
    Singh AK, Senani R, Tripathi MP (1999) Low-component-count high frequency resonators and their applications using op-amp compensation-poles. Frequenz 53:161–169CrossRefGoogle Scholar
  27. 27.
    Horng JW, Hou CL, Huang WS, Yang DY (2011) Voltage/current-mode multifunction filters using one current feedback amplifier and grounded capacitors. Circ Syst 2:60–64CrossRefGoogle Scholar
  28. 28.
    Liu SI (1995) Universal filter using two current-feedback amplifiers. Electron Lett 31:629–630CrossRefGoogle Scholar
  29. 29.
    Horng JW, Lee MH (1997) High input impedance voltage-mode low pass, band pass and high pass filter using current-feedback amplifiers. Electron Lett 33:947–948CrossRefGoogle Scholar
  30. 30.
    Senani R, Gupta SS (1997) Universal voltage-mode/current-mode biquad filter realised with current feedback op-amps. Frequenz 51:203–208CrossRefGoogle Scholar
  31. 31.
    Soliman AM (1998) A new filter configuration using current feedback op-amp. Microelectron J 29:409–419CrossRefGoogle Scholar
  32. 32.
    Horng JW (2000) New configuration for realizing universal voltage-mode filter using two current feedback amplifiers. IEEE Trans Instrum Meas 49:1043–1045CrossRefGoogle Scholar
  33. 33.
    Abuelma’atti MT, Al-Zaher HA (2000) New grounded-capacitor grounded-resistor controlled universal filter using current-feedback amplifiers. Proc Natl Sci Counc ROC (A) 24:205–209Google Scholar
  34. 34.
    Horng JW (2001) Voltage-mode multifunction filter using one current feedback amplifier and one voltage follower. Int J Electron 88:153–157CrossRefGoogle Scholar
  35. 35.
    Shah NA, Malik MA (2003) Multifunction filter using current feedback amplifiers. Frequenz 59:264–268Google Scholar
  36. 36.
    Gift SJG, Maundy B (2004) High-performance active band pass filter using current-feedback amplifiers. Int J Electron 91:563–570CrossRefGoogle Scholar
  37. 37.
    Shah NA, Iqbal SZ, Rather MF (2005) Versatile voltage-mode CFA-based universal filter. Int J Electron Commun (AEU) 59:192–194CrossRefGoogle Scholar
  38. 38.
    Mita R, Palumbo G, Pennisi S (2005) Non-idealities of Tow-Thomas biquads using VOA- and CFOA-based miller integrators. IEEE Trans Circ Syst-II 52:22–27CrossRefGoogle Scholar
  39. 39.
    Shah NA, Rather MF, Iqbal SZ (2005) A novel voltage-mode universal filter using a single CFA. J Active Passive Electron Devices 1:183–188Google Scholar
  40. 40.
    Djebbi M, Assi A, Sawan M (2005) Design of monolithic tunable CMOS band-pass filter using current feedback operational amplifiers. Analog Integr Circ Sign Process 45:143–154CrossRefGoogle Scholar
  41. 41.
    Singh VK, Singh AK, Bhaskar DR, Senani R (2006) New universal biquads employing CFOAs. IEEE Trans Circ Syst-II 53:1299–1303CrossRefGoogle Scholar
  42. 42.
    Sagbas M, Koksal M (2007) Voltage-mode three-input single-output multifunction filters employing minimum number of components. Frequenz 61:87–93CrossRefGoogle Scholar
  43. 43.
    Bhaskar DR, Prasad D (2007) New current mode biquad filter using CFOAs. J Active Passive Electron Devices 2:292–298Google Scholar
  44. 44.
    Manhas PS, Pal K, Sharma S, Mangotra LK, Jamwal KKS (2007) Realization of high-Q band pass filter using low voltage current feedback amplifiers. J Active Passive Electron Devices 4:13–20Google Scholar
  45. 45.
    Ferri G, Guerrini N, Piccirilli MC (2003) CFA based fully integrable KHN Biquad. Int Symp Sig Circ Syst 2:569–572Google Scholar
  46. 46.
    Palumbo G, Pennisi S (1999) Filter circuits synthesis with CFOAs-based differentiators. 16th IEEE Instrument Measurement Technology Conference (IMTC). pp 546–550Google Scholar
  47. 47.
    Yuce E (2010) Fully integrable mixed-mode universal biquad with specific application of the CFOA. Int J Electron Commun (AEU) 64:304–309CrossRefGoogle Scholar
  48. 48.
    Hou CL, Huang CC, Lan YS, Shaw JJ, Chang CM (1999) Current-mode and voltage-mode universal biquads using a single current-feedback amplifier. Int J Electron 86:929–932CrossRefGoogle Scholar
  49. 49.
    Dostal T (1995) Correspondence: Insensitive voltage-mode and current-mode filters from commercially available transimpedance op-amps. IEE Proc Circ Devices Syst 142:140–143CrossRefGoogle Scholar
  50. 50.
    Gupta SS, Bhaskar DR, Senani R, Singh AK (2009) Inverse active filters employing CFOAs. Electr Eng 91:23–26CrossRefGoogle Scholar
  51. 51.
    Gupta SS, Bhaskar DR, Senani R (2011) New analogue inverse filters realized with current feedback op-amps. Int J Electron 98:1103–1113CrossRefGoogle Scholar
  52. 52.
    Wang HU, Chang SH, Yang TY, Tsai PY (2011) A novel multifunction CFOA-based inverse filter. Circ Syst 2:14–17CrossRefGoogle Scholar
  53. 53.
    Kerwin WJ, Huelsman LP, Newcomb RW (1967) State-variable synthesis for insensitive integrated circuit transfer functions. IEEE J Solid State Circ SC-2:87–92CrossRefGoogle Scholar
  54. 54.
    Bohn DA (1986) Constant-Q graphic equalizer. J Audio Eng Soc 34:16Google Scholar
  55. 55.
    Baker BC (1999) Anti-aliasing, Analog filter for data acquisition systems. Application notes no. AN699 of Microchip Tech Inc 1-10Google Scholar
  56. 56.
    Banu M, Tsividis Y (1982) Floating voltage-controlled resistors in CMOS technology. Electron Lett 18:678–679CrossRefGoogle Scholar
  57. 57.
    Banu M, Tsividis Y (1983) Fully integrated active RC filters in MOS technology. IEEE J Solid State Circ SC-18:644–651CrossRefGoogle Scholar
  58. 58.
    Tsividis Y, Banu M, Khoury J (1986) Continuous-time MOSFET-C filters in VLSI. IEEE Trans Circ Syst 33:125–140CrossRefGoogle Scholar
  59. 59.
    Ismail M, Smith SV, Beale RG (1988) A new MOSFET-C universal filter structure for VLSI. IEEE J Solid State Circ 23:183–194CrossRefGoogle Scholar
  60. 60.
    Sakurai S, Ismail M, Michel JY, Sanchez-Sinencio E, Brannen R (1992) A MOSFET-C variable equalizer circuit with simple on-chip automatic tuning. IEEE J Solid State Circ 27:927–934CrossRefGoogle Scholar
  61. 61.
    Liu SI, Tsao HW, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431CrossRefGoogle Scholar
  62. 62.
    Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Circ Devices Syst 138:210–216CrossRefGoogle Scholar
  63. 63.
    Meng XR, Yu ZH (1996) CFA based fully integrated Tow-Thomas biquad. Electron Lett 32:722–723CrossRefGoogle Scholar
  64. 64.
    Gunes EO, Anday F (1997) CFA based fully integrated nth-order lowpass filter. Electron Lett 33:571–573CrossRefGoogle Scholar
  65. 65.
    Salama KN, Elwan HO, Soliman AM (2001) Parasitic-capacitance-insensitive voltage-mode MOSFET-C filters using differential current voltage conveyor. Circ Syst Sig Process 20:11–26CrossRefGoogle Scholar
  66. 66.
    Schmid HP, Moschytz GS (2000) Active- MOSFET-C single-amplifier biquadratic filters for video frequencies. IEE Proc Circ Devices Syst 147:35–41CrossRefGoogle Scholar
  67. 67.
    Chiu W, Tsay JH, Liu SI, Tsao H, Chen JJ (1995) Single-capacitor MOSFET-C integrator using OTRA. Electron Lett 31:1796–1797CrossRefGoogle Scholar
  68. 68.
    Chen JJ, Tsao HW, Liu SI, Chiu W (1995) Parasitic-capacitance-insensitive current-mode filters using operational transresistance amplifiers. IEE Proc Circuits Devices Syst 142:186–192CrossRefGoogle Scholar
  69. 69.
    Chen JJ, Tsao HW, Liu SI (2001) Voltage-mode MOSFET-C filters using operational transresistance amplifier (OTRAs) with reduced parasitic capacitance effect. IEE Proc Circ Devices Syst 148:242–249CrossRefGoogle Scholar
  70. 70.
    Hwang YS, Wu DS, Chen JJ, Shih CC, Chou WS (2007) Realization of higher-order OTRA-MOSFET-C active filters. Circ Syst Sig Process 26:281–291CrossRefzbMATHGoogle Scholar
  71. 71.
    Mahmoud SA, Soliman AM (1998) Novel MOS-C balanced-input balanced-output filter using the current feedback operational amplifier. Int J Electron 84:479–485CrossRefGoogle Scholar
  72. 72.
    Mahmoud SA, Soliman AM (1999) New MOS-C biquad filter using the current feedback operational amplifier. IEEE Trans Circ Syst-I 46:1510–1512CrossRefGoogle Scholar
  73. 73.
    Mahmoud SA, Soliman AM (2000) Novel MOS-C oscillators using the current feedback op-amp. Int J Electron 87:269–280CrossRefGoogle Scholar
  74. 74.
    Manetakis K, Toumazou C (1996) Current-feedback op-amp suitable for CMOS VLSI technology. Electron Lett 32:1090–1092CrossRefGoogle Scholar
  75. 75.
    Soliman AM, Madian AH (2009) MOS-C Tow-Thomas filter using voltage op amp, current feedback op amp and operational transresistance amplifier. J Circ Syst Comput 18:151–179CrossRefGoogle Scholar
  76. 76.
    Schaumann R, Ghausi MS, Laker KR (1990) Design of analog filters: active RC and switched capacitor. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  77. 77.
    Acar C, Ozoguz S (2000) Nth-order voltage transfer function synthesis using a commercially available active component, CFA: signal-flow graph approach. Frequenz 54:134–137Google Scholar
  78. 78.
    Rathore TS, Khot UP (2008) CFA-based grounded-capacitor operational simulation of ladder filters. Int J Circ Theor Appl 36:697–716CrossRefGoogle Scholar
  79. 79.
    Said LA, Madian AH, Ismail MH, Soliman AM (2011) Active realization of doubly terminated LC ladder filters using current feedback operational amplifier (CFOA) via linear transformation. Int J Electron Commun (AEU) 65:753–762CrossRefGoogle Scholar
  80. 80.
    Koukiou G, Psychalinos C (2010) Modular filter structures using current feedback operational amplifiers. Radioengineering 19:662–666Google Scholar
  81. 81.
    Katopodis V, Psychalinos C (2011) Multiple-loop feedback filters using feedback amplifiers. Int J Electron 98:833–846CrossRefGoogle Scholar
  82. 82.
    Mahmoud SA, Awad IA (2005) Fully differential CMOS current feedback operational amplifier. Analog Integr Circ Sign Process 43:61–69CrossRefGoogle Scholar
  83. 83.
    Soliman AM, Madian AH (2009) MOS-C KHN filter using voltage op amp, CFOA, OTRA and DCVC. J Circ Syst Comput 18:733–769CrossRefGoogle Scholar
  84. 84.
    Nandi R, Sanyal SK, Bandyopadhyay TK (2008) Third order lowpass Butterworth filter function realization using CFA. Int J Electron 95:313–318CrossRefGoogle Scholar
  85. 85.
    Fabre A (1995) Comment and reply: Insensitive voltage-mode and current-mode filters from transimpedance op amps. IEE Proc Circ Dev Syst 142:140–143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Jamia Millia Islamia, Electronics and Communication Engineering, F/O Engineering and TechnologyNew DelhiIndia
  3. 3.Electronics and Communication EngineeringHRCT Group of Institutions, F/O Engineering and TechnologyMota, GhaziabadIndia
  4. 4.Department of Electronics EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations