Advertisement

Introduction

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

After presenting an overview of analog circuits and their applications, the drawbacks and limitations of some traditional op-amp-based circuits have been elaborated. A brief account of a number of alternative, popular and modern analog circuit building blocks such as operational transconductance amplifier, Current conveyors, operational trans-resistance amplifier, four terminal floating nullors, current differencing buffered amplifier and current differencing transconductance amplifier, is given and the necessity and the scope of the present monograph have been highlighted.

Keywords

Analog Circuit Current Conveyor Current Difference Transconductance Amplifier Operational Transconductance Amplifier Current Feedback Operational Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Analog Devices (1990) Linear products data book. Analog Devices Inc., Norwood, MAGoogle Scholar
  2. 2.
    Fabre A (1992) Gyrator implementation from commercially available transimpedance operational amplifiers. Electron Lett 28:263–264CrossRefGoogle Scholar
  3. 3.
    Svoboda JA, McGory L, Webb S (1991) Applications of commercially available current conveyor. Int J Electron 70:159–164CrossRefGoogle Scholar
  4. 4.
    Toumazou C, Payne A, Lidgey FJ (1993) Current-feedback versus voltage feedback amplifiers: history, insight and relationships. IEEE Int Symp Circuits Syst 2:1046–1049Google Scholar
  5. 5.
    Franco S (1993) Analytical foundations of current-feedback amplifiers. IEEE Int Symp Circuits Syst 2:1050–1053Google Scholar
  6. 6.
    Bowers DF (1993) The so-called current-feedback operational amplifier-technological breakthrough or engineering curiosity? IEEE Int Symp Circuits Syst 2:1054–1057Google Scholar
  7. 7.
    Toumazou C, Lidgey FJ (1994) Current-feedback op-amps: a blessing in disguise? IEEE Circ Devices Mag 10:34–37Google Scholar
  8. 8.
    Soliman AM (1996) Applications of the current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302Google Scholar
  9. 9.
    Lidgey FJ, Hayatleh K (1997) Current-feedback operational amplifiers and applications. Electron Commun Eng J 9:176–182CrossRefGoogle Scholar
  10. 10.
    Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback op-amps. Frequenz 52:196–206CrossRefGoogle Scholar
  11. 11.
    Deboo GJ (1967) A novel integrator results by grounding its capacitor. Electron Des 15:90Google Scholar
  12. 12.
    Horrocks D (1974) A non-inverting differentiator using a single operational amplifier. Int J Electron 37:433–434CrossRefGoogle Scholar
  13. 13.
    Ganguly US (1976) Precise noninverting operator realization with high-resistive input impedance. Proc IEEE 64:1019–1021CrossRefGoogle Scholar
  14. 14.
    Rathore TS (1977) Inverse active networks. Electron Lett 13:303–304CrossRefGoogle Scholar
  15. 15.
    Abuelma’atti MT, Almaskati RH (1987) Active-C oscillator. Electron Wireless World 93:795–796Google Scholar
  16. 16.
    Linares-Barranco B, Rodriguez-Vazquez A, Huertas JL, Sanchez-Sinencio E, Hoyle JJ (1988) Generation and design of sinusoidal oscillators using OTAs. Proc IEEE Int Symp Circ Syst 3:2863–2866Google Scholar
  17. 17.
    Abuelma’atti MT, Almaskati RH (1989) Two new integrable active-C OTA-based linear voltage (current)-controlled oscillations. Int J Electron 66:135–138CrossRefGoogle Scholar
  18. 18.
    Senani R (1989) New electronically tunable OTA-C sinusoidal oscillator. Electron Lett 25:286–287CrossRefGoogle Scholar
  19. 19.
    Abuelma’atti MT (1989) New minimum component electronically tunable OTA-C sinusoidal oscillators. Electron Lett 25:1114–1115CrossRefGoogle Scholar
  20. 20.
    Senani R, Amit Kumar B (1989) Linearly tunable Wien bridge oscillator realised with operational transconductance amplifiers. Electron Lett 25:19–21CrossRefGoogle Scholar
  21. 21.
    Senani R, Tripathi MP, Bhaskar DR, Amit Kumar B (1990) Systematic generation of OTA-C sinusoidal oscillators. Electron Lett 26:1457–1459, also see (1991) ibid, 27:100–101CrossRefGoogle Scholar
  22. 22.
    Senani R, Amit Kumar B, Tripathi MP, Bhaskar DR (1991) Some simple techniques of generating OTA-C sinusoidal oscillators. Frequenz 45:177–181CrossRefGoogle Scholar
  23. 23.
    Bhaskar DR, Tripathi MP, Senani R (1993) A class of three-OTA-two-capacitor oscillators with non-interacting controls. Int J Electron 74:459–463CrossRefGoogle Scholar
  24. 24.
    Bhaskar DR, Tripathi MP, Senani R (1993) Systematic derivation of all possible canonic OTA-C sinusoidal oscillators. J Franklin Inst 330:885–900CrossRefzbMATHGoogle Scholar
  25. 25.
    Bhaskar DR, Senani R (1994) New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls. Microelectron J 25:115–123CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Vazquez A, Linares-Barranco B, Huertas JL, Sanchez-Sinencio E (1990) On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans Circ Syst 37:198–211CrossRefGoogle Scholar
  27. 27.
    Linnares-Barranco B, Rodriguez-Vazquez A, Sanchez-Sinencio E, Huertas JL (1989) 10 MHz CMOS OTA-C voltage-controlled quadrature oscillator. Electron Lett 25:765–767CrossRefGoogle Scholar
  28. 28.
    Linnares-Barranco B, Rodriguez-Vazquez A, Sanchez-Sinencio E, Huertas JL (1991) CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J Solid State Circ 26:160–165CrossRefGoogle Scholar
  29. 29.
    Sanchez-Sinencio E, Silva-Martinez J (2000) CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc Circ Devices Syst 147:3–12CrossRefGoogle Scholar
  30. 30.
    Guo N, Rout R (1998) Realisation of low power wide-band analog systems using a CMOS transconductor. IEEE Trans Circ Syst II 45:1299–1303CrossRefGoogle Scholar
  31. 31.
    Wilson G (1992) Linearized bipolar transconductor. Electron Lett 28:390–391CrossRefGoogle Scholar
  32. 32.
    Lee J, Hayatleh K, Lidgey FJ (2002) Linear Bi-CMOS transconductance for Gm-C filter applications. J Circ Syst Comput 11:1–12CrossRefGoogle Scholar
  33. 33.
    Smith KC, Sedra AS (1968) The current conveyor—a new circuit building block. Proc IEEE 56:1368–1369CrossRefGoogle Scholar
  34. 34.
    Sedra AS, Smith KC (1970) A second generation current conveyor and its applications. IEEE Trans Circ Theory 17:132–134CrossRefGoogle Scholar
  35. 35.
    Gilbert B (1975) Translinear circuits: a proposed classification. Electron Lett 11:14–16CrossRefGoogle Scholar
  36. 36.
    Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sign Process 35:79–90CrossRefGoogle Scholar
  37. 37.
    Fabre A (1985) Translinear current conveyors implementation. Int J Electron 59:619–623CrossRefGoogle Scholar
  38. 38.
    Normand G (1985) Translinear current conveyors. Int J Electron 59:771–777CrossRefGoogle Scholar
  39. 39.
    Toker A, Ozoguz S, Cicekoglu O, Acar C (2000) Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Trans Circ Syst II 47:949–954CrossRefGoogle Scholar
  40. 40.
    Chen JJ, Tsao HW, Liu SI (2001) Voltage-mode MOSFET-C filters using operational transresistance amplifiers (OTRAs) with reduced parasitic capacitance effect. IEE Proc Circ Devices Syst 148:242–249CrossRefGoogle Scholar
  41. 41.
    Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2004) Novel two OTRA-based grounded immittance simulator topologies. Analog Intger Circ Sign Process 39:169–175CrossRefGoogle Scholar
  42. 42.
    Gupta A, Senani R, Bhaskar DR, Singh AK (2012) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst Sign Process 31:489–499MathSciNetCrossRefGoogle Scholar
  43. 43.
    Hou CL, Chien HC, Lo YK (2005) Square wave generators employing OTRAs. IEE Proc Circ Devices Syst 152:718–722CrossRefGoogle Scholar
  44. 44.
    Senani R (1987) A novel application of four-terminal floating nullors. Proc IEEE 75:1544–1546CrossRefGoogle Scholar
  45. 45.
    Senani R (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett 23:1202–1203CrossRefGoogle Scholar
  46. 46.
    Huijsing JH (1990) Operational floating amplifier. IEE Proc 137:131–136Google Scholar
  47. 47.
    Kumar P, Senani R (2002) Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integr Circ Sign Process 33:65–76CrossRefGoogle Scholar
  48. 48.
    Higashimura M (1991) Realization of current-mode transfer function using four-terminal floating nullor. Electron Lett 27:170–171CrossRefGoogle Scholar
  49. 49.
    Cam U, Toker A, Kuntman H (2000) CMOS FTFN realization based on translinear cells. Electron Lett 36:1255–1256CrossRefGoogle Scholar
  50. 50.
    Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing. Microelectron J 30:157–160CrossRefGoogle Scholar
  51. 51.
    Ozoguz S, Toker A, Acar C (1998) Current-mode continuous-time fully integrated universal filter using CDBAs. Electron Lett 35:97–98CrossRefGoogle Scholar
  52. 52.
    Pathak JK, Singh AK, Senani R (2011) Systematic realization of quadrature oscillators using current differencing buffered amplifiers. IET Circ Devices Syst 5:203–211CrossRefGoogle Scholar
  53. 53.
    Biolek D (2003) CDTA-building block for current-mode analog signal processing. Proc ECCTD Poland III: 397–400Google Scholar
  54. 54.
    Bilolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32Google Scholar
  55. 55.
    Deliyannis T, Sun Y, Fidler JK (1999) Continuous-time active filter design. CRC, Boca Raton, FLGoogle Scholar
  56. 56.
    Keskin AU, Bilolek D, Honcioglue E, Biolkova V (2006) Current-mode KHN filter employing current differencing transconductance amplifiers. Int J Electron Commun (AEU) 60:443–446CrossRefGoogle Scholar
  57. 57.
    Cakir C, Cam U, Cicekoglu O (2005) Novel all pass filter configuration employing single OTRA. IEEE Trans Circ Syst II 52:122–125CrossRefGoogle Scholar
  58. 58.
    Huijsing JH (1993) Design and applications of operational floating amplifier (OFA): the most universal operational amplifier. Analog Integr Circ Sign Process 4:115–129CrossRefGoogle Scholar
  59. 59.
    Prasad D, Bhaskar DR, Singh AK (2010) New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering 19:194–198Google Scholar
  60. 60.
    Prasad D, Bhaskar DR, Singh AK (2008) Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans Electron 5:257–259Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Jamia Millia Islamia, Electronics and Communication Engineering, F/O Engineering and TechnologyNew DelhiIndia
  3. 3.Electronics and Communication EngineeringHRCT Group of Institutions, F/O Engineering and TechnologyMota, GhaziabadIndia
  4. 4.Department of Electronics EngineeringInstitute of Engineering and TechnologyLucknowIndia

Personalised recommendations