Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

After presenting an overview of analog circuits and their applications, the drawbacks and limitations of some traditional op-amp-based circuits have been elaborated. A brief account of a number of alternative, popular and modern analog circuit building blocks such as operational transconductance amplifier, Current conveyors, operational trans-resistance amplifier, four terminal floating nullors, current differencing buffered amplifier and current differencing transconductance amplifier, is given and the necessity and the scope of the present monograph have been highlighted.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: http://dx.doi.org/10.1007/978-1-4614-5188-4_9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The minimum number of resistors necessary to realize VCCS and CCVS is one.

  2. 2.

    Although a specific type of OTRA namely, the so called Norton amplifier had been commercially available since long from several manufacturers such as LM3900 from National Semiconductors, these commercial realizations do not provide virtual ground at the input terminals and they allow the input current to flow only in one direction. The former disadvantage limits the functionality of the Norton amplifier whereas the later calls for the use of external DC bias circuits leading to complex and clumsy designs even for simple functions.

  3. 3.

    It may be mentioned that acronym ‘FTFN’ was first coined explicitly in [44] and [45].

References

  1. Analog Devices (1990) Linear products data book. Analog Devices Inc., Norwood, MA

    Google Scholar 

  2. Fabre A (1992) Gyrator implementation from commercially available transimpedance operational amplifiers. Electron Lett 28:263–264

    Article  Google Scholar 

  3. Svoboda JA, McGory L, Webb S (1991) Applications of commercially available current conveyor. Int J Electron 70:159–164

    Article  Google Scholar 

  4. Toumazou C, Payne A, Lidgey FJ (1993) Current-feedback versus voltage feedback amplifiers: history, insight and relationships. IEEE Int Symp Circuits Syst 2:1046–1049

    Google Scholar 

  5. Franco S (1993) Analytical foundations of current-feedback amplifiers. IEEE Int Symp Circuits Syst 2:1050–1053

    Google Scholar 

  6. Bowers DF (1993) The so-called current-feedback operational amplifier-technological breakthrough or engineering curiosity? IEEE Int Symp Circuits Syst 2:1054–1057

    Google Scholar 

  7. Toumazou C, Lidgey FJ (1994) Current-feedback op-amps: a blessing in disguise? IEEE Circ Devices Mag 10:34–37

    Google Scholar 

  8. Soliman AM (1996) Applications of the current feedback operational amplifiers. Analog Integr Circ Sign Process 11:265–302

    Google Scholar 

  9. Lidgey FJ, Hayatleh K (1997) Current-feedback operational amplifiers and applications. Electron Commun Eng J 9:176–182

    Article  Google Scholar 

  10. Senani R (1998) Realization of a class of analog signal processing/signal generation circuits: novel configurations using current feedback op-amps. Frequenz 52:196–206

    Article  Google Scholar 

  11. Deboo GJ (1967) A novel integrator results by grounding its capacitor. Electron Des 15:90

    Google Scholar 

  12. Horrocks D (1974) A non-inverting differentiator using a single operational amplifier. Int J Electron 37:433–434

    Article  Google Scholar 

  13. Ganguly US (1976) Precise noninverting operator realization with high-resistive input impedance. Proc IEEE 64:1019–1021

    Article  Google Scholar 

  14. Rathore TS (1977) Inverse active networks. Electron Lett 13:303–304

    Article  Google Scholar 

  15. Abuelma’atti MT, Almaskati RH (1987) Active-C oscillator. Electron Wireless World 93:795–796

    Google Scholar 

  16. Linares-Barranco B, Rodriguez-Vazquez A, Huertas JL, Sanchez-Sinencio E, Hoyle JJ (1988) Generation and design of sinusoidal oscillators using OTAs. Proc IEEE Int Symp Circ Syst 3:2863–2866

    Google Scholar 

  17. Abuelma’atti MT, Almaskati RH (1989) Two new integrable active-C OTA-based linear voltage (current)-controlled oscillations. Int J Electron 66:135–138

    Article  Google Scholar 

  18. Senani R (1989) New electronically tunable OTA-C sinusoidal oscillator. Electron Lett 25:286–287

    Article  Google Scholar 

  19. Abuelma’atti MT (1989) New minimum component electronically tunable OTA-C sinusoidal oscillators. Electron Lett 25:1114–1115

    Article  Google Scholar 

  20. Senani R, Amit Kumar B (1989) Linearly tunable Wien bridge oscillator realised with operational transconductance amplifiers. Electron Lett 25:19–21

    Article  Google Scholar 

  21. Senani R, Tripathi MP, Bhaskar DR, Amit Kumar B (1990) Systematic generation of OTA-C sinusoidal oscillators. Electron Lett 26:1457–1459, also see (1991) ibid, 27:100–101

    Article  Google Scholar 

  22. Senani R, Amit Kumar B, Tripathi MP, Bhaskar DR (1991) Some simple techniques of generating OTA-C sinusoidal oscillators. Frequenz 45:177–181

    Article  Google Scholar 

  23. Bhaskar DR, Tripathi MP, Senani R (1993) A class of three-OTA-two-capacitor oscillators with non-interacting controls. Int J Electron 74:459–463

    Article  Google Scholar 

  24. Bhaskar DR, Tripathi MP, Senani R (1993) Systematic derivation of all possible canonic OTA-C sinusoidal oscillators. J Franklin Inst 330:885–900

    Article  MATH  Google Scholar 

  25. Bhaskar DR, Senani R (1994) New linearly tunable CMOS-compatible OTA-C oscillators with non-interacting controls. Microelectron J 25:115–123

    Article  Google Scholar 

  26. Rodriguez-Vazquez A, Linares-Barranco B, Huertas JL, Sanchez-Sinencio E (1990) On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans Circ Syst 37:198–211

    Article  Google Scholar 

  27. Linnares-Barranco B, Rodriguez-Vazquez A, Sanchez-Sinencio E, Huertas JL (1989) 10 MHz CMOS OTA-C voltage-controlled quadrature oscillator. Electron Lett 25:765–767

    Article  Google Scholar 

  28. Linnares-Barranco B, Rodriguez-Vazquez A, Sanchez-Sinencio E, Huertas JL (1991) CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J Solid State Circ 26:160–165

    Article  Google Scholar 

  29. Sanchez-Sinencio E, Silva-Martinez J (2000) CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc Circ Devices Syst 147:3–12

    Article  Google Scholar 

  30. Guo N, Rout R (1998) Realisation of low power wide-band analog systems using a CMOS transconductor. IEEE Trans Circ Syst II 45:1299–1303

    Article  Google Scholar 

  31. Wilson G (1992) Linearized bipolar transconductor. Electron Lett 28:390–391

    Article  Google Scholar 

  32. Lee J, Hayatleh K, Lidgey FJ (2002) Linear Bi-CMOS transconductance for Gm-C filter applications. J Circ Syst Comput 11:1–12

    Article  Google Scholar 

  33. Smith KC, Sedra AS (1968) The current conveyor—a new circuit building block. Proc IEEE 56:1368–1369

    Article  Google Scholar 

  34. Sedra AS, Smith KC (1970) A second generation current conveyor and its applications. IEEE Trans Circ Theory 17:132–134

    Article  Google Scholar 

  35. Gilbert B (1975) Translinear circuits: a proposed classification. Electron Lett 11:14–16

    Article  Google Scholar 

  36. Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sign Process 35:79–90

    Article  Google Scholar 

  37. Fabre A (1985) Translinear current conveyors implementation. Int J Electron 59:619–623

    Article  Google Scholar 

  38. Normand G (1985) Translinear current conveyors. Int J Electron 59:771–777

    Article  Google Scholar 

  39. Toker A, Ozoguz S, Cicekoglu O, Acar C (2000) Current-mode all-pass filters using current differencing buffered amplifier and a new high-Q bandpass filter configuration. IEEE Trans Circ Syst II 47:949–954

    Article  Google Scholar 

  40. Chen JJ, Tsao HW, Liu SI (2001) Voltage-mode MOSFET-C filters using operational transresistance amplifiers (OTRAs) with reduced parasitic capacitance effect. IEE Proc Circ Devices Syst 148:242–249

    Article  Google Scholar 

  41. Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A (2004) Novel two OTRA-based grounded immittance simulator topologies. Analog Intger Circ Sign Process 39:169–175

    Article  Google Scholar 

  42. Gupta A, Senani R, Bhaskar DR, Singh AK (2012) OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits Syst Sign Process 31:489–499

    Article  MathSciNet  Google Scholar 

  43. Hou CL, Chien HC, Lo YK (2005) Square wave generators employing OTRAs. IEE Proc Circ Devices Syst 152:718–722

    Article  Google Scholar 

  44. Senani R (1987) A novel application of four-terminal floating nullors. Proc IEEE 75:1544–1546

    Article  Google Scholar 

  45. Senani R (1987) Generation of new two-amplifier synthetic floating inductors. Electron Lett 23:1202–1203

    Article  Google Scholar 

  46. Huijsing JH (1990) Operational floating amplifier. IEE Proc 137:131–136

    Google Scholar 

  47. Kumar P, Senani R (2002) Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integr Circ Sign Process 33:65–76

    Article  Google Scholar 

  48. Higashimura M (1991) Realization of current-mode transfer function using four-terminal floating nullor. Electron Lett 27:170–171

    Article  Google Scholar 

  49. Cam U, Toker A, Kuntman H (2000) CMOS FTFN realization based on translinear cells. Electron Lett 36:1255–1256

    Article  Google Scholar 

  50. Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing. Microelectron J 30:157–160

    Article  Google Scholar 

  51. Ozoguz S, Toker A, Acar C (1998) Current-mode continuous-time fully integrated universal filter using CDBAs. Electron Lett 35:97–98

    Article  Google Scholar 

  52. Pathak JK, Singh AK, Senani R (2011) Systematic realization of quadrature oscillators using current differencing buffered amplifiers. IET Circ Devices Syst 5:203–211

    Article  Google Scholar 

  53. Biolek D (2003) CDTA-building block for current-mode analog signal processing. Proc ECCTD Poland III: 397–400

    Google Scholar 

  54. Bilolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32

    Google Scholar 

  55. Deliyannis T, Sun Y, Fidler JK (1999) Continuous-time active filter design. CRC, Boca Raton, FL

    Google Scholar 

  56. Keskin AU, Bilolek D, Honcioglue E, Biolkova V (2006) Current-mode KHN filter employing current differencing transconductance amplifiers. Int J Electron Commun (AEU) 60:443–446

    Article  Google Scholar 

  57. Cakir C, Cam U, Cicekoglu O (2005) Novel all pass filter configuration employing single OTRA. IEEE Trans Circ Syst II 52:122–125

    Article  Google Scholar 

  58. Huijsing JH (1993) Design and applications of operational floating amplifier (OFA): the most universal operational amplifier. Analog Integr Circ Sign Process 4:115–129

    Article  Google Scholar 

  59. Prasad D, Bhaskar DR, Singh AK (2010) New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering 19:194–198

    Google Scholar 

  60. Prasad D, Bhaskar DR, Singh AK (2008) Realisation of single-resistance-controlled sinusoidal oscillator: a new application of the CDTA. WSEAS Trans Electron 5:257–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K., Singh, V.K. (2013). Introduction. In: Current Feedback Operational Amplifiers and Their Applications. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5188-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5188-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5187-7

  • Online ISBN: 978-1-4614-5188-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics