Acute Kidney Injury After Liver Transplantation

  • Raymond M. Planinsic
  • Tetsuro Sakai
  • Ibtesam A. Hilmi


The incidence of postoperative renal insufficiency and acute kidney injury (AKI) in patients undergoing liver transplantation ranges from 20 % up to 90 % [1] and more than 80 % of these episodes occur within the first 2 postoperative days. Earlier studies found that mortality at 30 days was 50 % in patients who developed AKI and 29 % in non-AKI patients [2]. AKI necessitating renal replacement therapy has been associated with mortality rates from 55 to 90 % [3]. Risk factors for the development of AKI in these patients include preoperative renal dysfunction represented with a higher preoperative serum creatinine (SCrea), greater requirements for intraoperative blood transfusion, more frequent episodes of intraoperative hypotension, and other preexisting comorbidities [2].


Toxicity Filtration Ischemia Creatinine Anemia 


  1. 1.
    McCauley J, et al. Acute and chronic renal failure in liver transplantation. Nephron. 1990;55(2):121–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Pascual E, et al. Incidence and risk factors of early acute renal failure in liver transplant patients. Transplant Proc. 1993;25(2):1827.Google Scholar
  3. 3.
    Ishitani M, et al. Outcome of patients requiring hemodialysis after liver transplantation. Transplant Proc. 1993;25(2):1762–3.PubMedGoogle Scholar
  4. 4.
    Bellomo R, et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Mehta RL, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.PubMedCrossRefGoogle Scholar
  6. 6.
    Fraley DS, et al. Impact of acute renal failure on mortality in end-stage liver disease with or without transplant. Kidney Int. 1998;54:518–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Wagener G, et al. Urinary neutrophil gelatinase-associated lipocalin as a marker of acute kidney injury after orthotopic liver transplantation. Nephrol Dial Transplant. 2011;26(5):1717–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Niemann CU, et al. Acute kidney injury during liver transplantation as determined by neutrophil gelatinase-associated lipocalin. Liver Transpl. 2009;15(12):1852–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Portal AJ, et al. Neutrophil gelatinase-associated lipocalin predicts acute kidney injury in patients undergoing liver transplantation. Liver Transpl. 2010;16(11):1257–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Esson ML, Schrier RW. Diagnosis and treatment of acute tubular necrosis. Ann Intern Med. 2002;137(9):744–52.PubMedGoogle Scholar
  11. 11.
    Cotterell AH, et al. Calcineurin inhibitor-induced chronic nephrotoxicity in liver transplant patients is reversible using rapamycin as the primary immunosuppressive agent. Clin Transpl. 2002;16 Suppl 7:49–51.CrossRefGoogle Scholar
  12. 12.
    Gonwa TA, et al. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation. 2002;74(11):1560–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Benigni A, et al. Nature and mediators of renal lesions in kidney transplant patients given cyclosporine for more than one year. Kidney Int. 1999;55(2):674–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Jurewicz WA, et al. Tracolimus versus cyclosporine immunosuppression: long-term outcome in renal transplantation. Nephrol Dial Transplant. 2003;18 Suppl 1:I7–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Starzl TE, et al. Tolerogenic immunosuppression for organ transplantation. Lancet. 2003;361(9368):1502–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Cardarelli F, et al. The problem of late allograft loss in kidney transplantation. Minerva Urol Nefrol. 2003;55(1):1–11.PubMedGoogle Scholar
  17. 17.
    Ojo AO, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349(10):931–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Rerolle JP, et al. Tacrolimus-induced hemolytic uremic syndrome and end stage renal failure after liver transplantation. Clin Transplant. 2000;14(3):262–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Evens AM, et al. TTP/HUS occurring in a simultaneous pancreas/kidney transplant recipient after clopidogrel treatment: evidence of a nonimmunological etiology. Transplantation. 2002;74(6):885–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Yango A, et al. Successful treatment of tacrolimus-associated thrombotic microangiopathy with sirolimus conversion and plasma exchange. Clin Nephrol. 2002;58(1):77–8.PubMedGoogle Scholar
  21. 21.
    Medina PJ, Sipols JM, George JN. Drug-associated thrombotic thrombocytopenia purpura-hemolytic uremic syndrome. Curr Opin Hematol. 2001;8(5):286–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Holman MJ, et al. FK506 associated thrombotic thrombocytopenic purpura. Transplantation. 1993;55(1):205–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Burch J, Moore F, Franciose R. The abdominal compartment syndrome. Surg Clin North Am. 1996;76:833–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Malbrain M. Abdominal pressure in the critically ill patients. Intensive Care Med. 1999;25:1453–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cullen DJ, et al. Cardiovascular, pulmonary and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med. 1989;17:118–21.PubMedCrossRefGoogle Scholar
  26. 26.
    Biancofiore G, et al. Intra-abdominal pressure monitoring in liver transplant recipients: a prospective study. Intensive Care Med. 2003;29(1):30–6.PubMedGoogle Scholar
  27. 27.
    Mogilner J, et al. Effect of elevated intra-abdominal pressure on portal vein and superior mesenteric artery blood flow in a rat. J Laparoendosc Adv Surg Tech A. 2009;19 Suppl 1:S59–62.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsai JD, et al. Epstein-Barr virus-associated acute renal failure: diagnosis, treatment and follow-up. Pediatr Nephrol. 2003;18(7):667–74.PubMedGoogle Scholar
  29. 29.
    Collins MH, et al. Autopsy pathology of pediatric posttransplant lymphoproliferative disorder. Pediatrics. 2001;107(6):E89.PubMedCrossRefGoogle Scholar
  30. 30.
    Iwamoto S, et al. BK virus-associated fatal renal failure following late-onset hemorrhagic cystitis in an unrelated bone marrow transplant. Pediatr Hematol Oncol. 2002;19(4):255–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Hirsch HH, et al. Prospective study of polyomavirus type BK replication and nephropathy in renal-transplant recipients. N Engl J Med. 2002;347(7):488–96.PubMedCrossRefGoogle Scholar
  32. 32.
    Elli A, et al. BK polyomavirus interstitial nephritis in a renal transplant patient with no previous acute rejection episodes. J Nephrol. 2002;15(3):313–6.PubMedGoogle Scholar
  33. 33.
    Hirsch HH, et al. Polyomavirus BK nephropathy: a (re-)emerging complication in renal transplantation. Am J Transplant. 2002;2(1):25–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Marshall WF, et al. Survey of urine from transplant recipients for polyomavirus JC and BK using the polymerase chain reaction. Mol Cell Probes. 1991;5(2):125–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Raymond M. Planinsic
    • 1
  • Tetsuro Sakai
    • 2
  • Ibtesam A. Hilmi
    • 3
  1. 1.Department of AnesthesiologyUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Department of AnesthesiologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of AnesthesiologyUPMC PresbyterianPittsburghUSA

Personalised recommendations