Multi-objective Optimization Model and Algorithms for Partner Selection

  • Mohammad Mehedi Hassan
  • Eui-Nam Huh
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

The Partner selection is an important decision problem in the formation of a dynamic cloud collaboration platform. Selecting suitable cloud partners to form a group will facilitate the success of collaborative cloud services. In this chapter, first, we present a promising multi-objective (MO) optimization model of partner selection considering individual information (INI) and past relationship information (PRI) with collaboration cost optimization among cloud providers in a DCC platform. Then to solve this MO optimization model, a general framework of multi-objective genetic algorithm (MOGA) that uses INI and PRI of cloud providers called MOGA-IC is presented. Finally, two algorithms called NSGA-II and SPEA2 are developed to implement MOGA-IC.

Keywords

Expense Sorting 

References

  1. 1.
    Software as a Service: Strategic Backgrounder. The Software Information Industry and Association. http://www.siia.net/estore/ssb-01.pdf. Accessed Feb 2001
  2. 2.
    Amazon S3 Availability Event. Amazon Service Health Dashboard. http://status.aws.amazon.com/s3-20080720.html. Accessed 20 July 2008
  3. 3.
    Amazon Elastic Compute Cloud (EC2). http://www.amazon.com/ec2/. Accessed March 2010
  4. 4.
    Google App Engine. http://appengine.google.com. Accessed Sept 2010
  5. 5.
    Windows azure platform. http://www.microsoft.com/azure/. Accessed Sept 2010
  6. 6.
    An, B., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment for dynamic resource allocation in cloud computing. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1 - Volume 1, AAMAS ’10, pp. 981–988 (2010)Google Scholar
  7. 7.
    Anandasivam, A., Buschek, S., Buyya, R.: A heuristic approach for capacity control in clouds. In: CEC ’09: Proceedings of the 2009 IEEE Conference on Commerce and Enterprise Computing, pp. 90–97. IEEE Computer Society, Washington, DC (2009). doi:http://dx.doi.org/10.1109/CEC.2009.20
  8. 8.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley (2009). http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
  9. 9.
    Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for the intercloud - protocols and formats for cloud computing interoperability. In: ICIW ’09: Proceedings of the 2009 Fourth International Conference on Internet and Web Applications and Services, pp. 328–336. IEEE Computer Society, Washington, DC (2009). doi:http://dx.doi.org/10.1109/ICIW.2009.55
  10. 10.
    Boghosian, B., Coveney, P., Dong, S., Finn, L., Jha, S., Karniadakis, G., Karonis, N.: Nektar, spice and vortonics: using federated grids for large scale scientific applications. Cluster Comput. 10(3), 351–364 (2007). doi:http://dx.doi.org/10.1007/s10586-007-0029-4
  11. 11.
    Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.: IBM on cloud computing. IBM Technical Report, High Performance On-Demand Solutions (2007)Google Scholar
  12. 12.
    Bubendorfer, K.: Fine grained resource reservation in open grid economies. In: E-SCIENCE ’06: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 81. IEEE Computer Society, Washington, DC (2006). doi:http://dx.doi.org/10.1109/E-SCIENCE.2006.68
  13. 13.
    Bubendorfer, K., Thomson, W.: Resource management using untrusted auctioneers in a grid economy. In: E-SCIENCE ’06: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 74. IEEE Computer Society, Washington, DC (2006). doi:http://dx.doi.org/10.1109/E-SCIENCE.2006.115
  14. 14.
    Buyya, R., Ranjan, R., Calheiros, R.: Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services. In: Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science, vol. 6081, pp. 13–31. Springer, Berlin (2010)Google Scholar
  15. 15.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. J. Soft. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  16. 16.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generat. Comput. Syst. 25(6), 599–616 (2009). doi:http://dx.doi.org/10.1016/j.future.2008.12.001
  17. 17.
    Campbell, R., Gupta, I., Heath, M., Ko, S.Y., Kozuch, M., Kunze, M., Kwan, T., Lai, K., Lee, H.Y., Lyons, M., Milojicic, D., O’Hallaron, D., Soh, Y.C.: Open cirrustmcloud computing testbed: federated data centers for open source systems and services research. In: HotCloud’09: Proceedings of the 2009 conference on Hot topics in cloud computing, pp. 1–1. USENIX Association, Berkeley, CA (2009)Google Scholar
  18. 18.
    Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable cross-federation. In: IEEE 3rd International Conference on cloud Computing (CLOUD), pp. 337–345, Miami, FL, USA (2010)Google Scholar
  19. 19.
    Members of EGEE-II: An egee comparative study: Grids and clouds – evolution or revolution. Technical report, Enabling Grids for E-sciencE Project, June 2008. Electronic version available at https://edms.cern.ch/document/925013/
  20. 20.
    Chang, S.L., Wang, R.C., Wang, S.Y.: Applying fuzzy linguistic quantifier to select supply chain partners at different phases of product life cycle. Int. J. Prod. Econ. 100(2), 348–359 (2006). http://ideas.repec.org/a/eee/proeco/v100y2006i2p348-359.html
  21. 21.
    Chang, Y.C., Li, C.S., Smith, J.R.: Searching dynamically bundled goods with pairwise relations. In: Proceedings of the 4th ACM conference on Electronic commerce, EC ’03, pp. 135–143. ACM, New York, NY (2003). doi:http://doi.acm.org/10.1145/779928.779945. http://doi.acm.org/10.1145/779928.779945
  22. 22.
    Che, Z., Wang, H., Sha, D.: A multi-criterion interaction-oriented model with proportional rule for designing supply chain networks. Expert Syst. Appl. 33(4), 1042–1053 (2007). DOI: 10.1016/j.eswa.2006.08.015. http://www.sciencedirect.com/science/article/B6V03-4KYY4GG-2/2/483f1f3b0da536fe558ae4ff5c0be975
  23. 23.
    Chen, Y.L., Cheng, L.C., Chuang, C.N.: A group recommendation system with consideration of interactions among group members. Expert Syst. Appl. 34(3), 2082–2090 (2008). doi:http://dx.doi.org/10.1016/j.eswa.2007.02.008 Google Scholar
  24. 24.
    Cheng, F., Ye, F., Yang, J.: Multi-objective optimization of collaborative manufacturing chain with time-sequence constraints. Int. J. Adv. Manuf. Tech. 40, 1024–1032 (2009). http://dx.doi.org/10.1007/s00170-008-1388-6. 10.1007/s00170-008-1388-6
  25. 25.
    Chunyan, D., Yi, Y.: The method integration model for partner selection in the virtual enterprise. Int. Conf. Serv. Syst. Serv. Manag. 1, 716–720 (2005). doi:http://doi.ieeecomputersociety.org/10.1109/ICSSSM.2005.1499570
  26. 26.
    Claburn, T.: Google news suffers outage. Information Week, http://www.informationweek.com/news/internet/google/showArticle.jhtml?articleID=220100659&subSection=Google. Accessed 22 Sept 2009
  27. 27.
    Clarke, E.H.: Multipart pricing of public goods. Publ. Choice 11, 17–33 (1971)CrossRefGoogle Scholar
  28. 28.
    Corne, D., Knowles, J., Oates, M.: The pareto envelope-based selection algorithm for multiobjective optimization. In: Parallel Problem Solving from Nature PPSN VI. Lecture Notes in Computer Science, vol. 1917, pp. 839–848. Springer, Berlin (2000)Google Scholar
  29. 29.
    Coursey, D.: Google outage: If this is our future, it looks bad. PC World, http://www.gartner.com/it/page.jsp?id=871113. Accessed 01 Sept 2009
  30. 30.
    Cowan, R., Jonard, N., Zimmermann, J.B.: Bilateral collaboration and the emergence of innovation networks. Manag. Sci. 53(7), 1051–1067 (2007). doi:http://dx.doi.org/10.1287/mnsc.1060.0618 Google Scholar
  31. 31.
    Das, A., Grosu, D.: Combinatorial auction-based protocols for resource allocation in grids. In: IPDPS ’05: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop 13, p. 251.1. IEEE Computer Society, Washington, DC (2005). doi:http://dx.doi.org/10.1109/IPDPS.2005.140
  32. 32.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: Nsga-ii. In: PPSN VI: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, London (2000)Google Scholar
  33. 33.
    Ding, J.F., Liang, G.S.: Using fuzzy mcdm to select partners of strategic alliances for liner shipping. Int. J. Informat. Comput. Sci. 173(1–3), 197–225 (2005)MATHGoogle Scholar
  34. 34.
    Dodda, R.T., Smith, C., van Moorsel, A.: An architecture for cross-cloud system management. Contemporary computing, communications in computer and information science, vol. 40. Springer, Berlin (2009). ISBN 978-3-642-03546-3Google Scholar
  35. 35.
    Dubey, A., Mohiuddin, J., Baijal, A., Rangaswami, M.: Enterprise software customer survey. Sand Hill Group, McKinsey and Company. http://www.interop.com/downloads/mckinsey_interop_survey.pdf (2008)
  36. 36.
    Elmroth, E., Larsson, L.: Interfaces for placement, migration, and monitoring of virtual machines in federated clouds. In: GCC ’09: Proceedings of the 2009 Eighth International Conference on Grid and Cooperative Computing, pp. 253–260. IEEE Computer Society, Washington, DC, USA (2009). doi:http://dx.doi.org/10.1109/GCC.2009.36
  37. 37.
    Emden, Z., Calantone, R., Droge, C.: Collaborating for new product development: selecting the partner with maximum potential to create value. J. Prod. Innovat. Manag. 23(4), 330–341 (2006)CrossRefGoogle Scholar
  38. 38.
    Famuyiwa, O., Monplaisir, L., Nepal, B.: An integrated fuzzy-goal-programming-based framework for selecting suppliers in strategic alliance formation. Int. J. Prod. Econ. 113(2), 862–875 (2008)CrossRefGoogle Scholar
  39. 39.
    Fan, Z.P., Bo, F.: A multiple attributes decision making method using individual and collaborative attribute data in a fuzzy environment. Inform. Sci. 179(20), 3603 – 3618 (2009)CrossRefGoogle Scholar
  40. 40.
    Fan, Z.P., Feng, B., Jiang, Z.Z., Fu, N.: A method for member selection of R&D teams using the individual and collaborative information. Expert Syst. Appl. 36(4), 8313–8323 (2009). doi:http://dx.doi.org/10.1016/j.eswa.2008.10.020
  41. 41.
    Farahani, R.Z., Elahipanah, M.: A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Int. J. Prod. Econ. 111(2), 229–243 (2008)CrossRefGoogle Scholar
  42. 42.
    Feng, B., Fan, Z.P., Ma, J.: A method for partner selection of codevelopment alliances using individual and collaborative utilities. Int. J. Prod. Econ. 124(1), 159–170 (2010)CrossRefGoogle Scholar
  43. 43.
    Fischer, M., Jahn, H., Teich, T.: Optimizing the selection of partners in production networks. Int. J. Robot. Comput. Integr. Manuf. 20(6), 593–601 (2004)CrossRefGoogle Scholar
  44. 44.
    Fuqing, Z., Yi, H., Dongmei, Y.: A multi-objective optimization model of the partner selection problem in a virtual enterprise and its solution with genetic algorithms. Int. J. Adv. Manuf. Tech. 28, 1246–1253 (2006). http://dx.doi.org/10.1007/s00170-004-2461-4. 10.1007/s00170-004-2461-4
  45. 45.
    Gartner, I.: Cloud application infrastructure technologies need seven years to mature. http://www.gartner.com/it/page.jsp?id=871113. Accessed Feb 2009
  46. 46.
    Geelan, J.: Twenty-one experts define cloud computing. Retrieved Sept 2010 from http://cloudcomputing.sys-con.com/node/612375/print. Accessed Aug 2008
  47. 47.
    Gens, F.: IDC’s new IT cloud services forecast: 2009–2013. http://blogs.idc.com/ie/?p=543. Accessed Oct 2009
  48. 48.
    Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing providers’ profit. In: IEEE 3rd International Conference on Cloud Computing, pp. 123–130, Miami, FL, USA (2010)Google Scholar
  49. 49.
    Gomes, E.R., Vo, Q.B., Kowalczyk, R.: Pure exchange markets for resource sharing in federated clouds. Concurrency Comput. Pract. Exp. 24(9), 977–991 John Wiley and Sons Ltd. Chichester, UK (2012)Google Scholar
  50. 50.
    Hajidimitriou, Y.A., Georgiou, A.C.: A goal programming model for partner selection decisions in international joint ventures. Eur. J. Oper. Res. 138(3), 649–662 (2002)MATHCrossRefGoogle Scholar
  51. 51.
    Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the use of cloud computing for scientific workflows. In: ESCIENCE ’08: Proceedings of the 2008 Fourth IEEE International Conference on eScience, pp. 640–645. IEEE Computer Society, Washington, DC, USA (2008). doi:http://dx.doi.org/10.1109/eScience.2008.167
  52. 52.
    Huang, B., Gao, C., Chen, L.: Study on partner selection for a virtual enterprise based on vague sets. In: CCIE’10: Proceedings of the 2010 International Conference on Computing, Control and Industrial Engineering, 1, pp. 110–113, Wuhan, China (2010)Google Scholar
  53. 53.
    Huang, X.G., Wong, Y.S., Wang, J.: A two-stage manufacturing partner selection framework for virtual enterprises. Int. J. Comput. Integr. Manuf. 17(4), 294–304 (2004). http://www.informaworld.com/10.1080/09511920310001654292 Google Scholar
  54. 54.
    IBM: Cloud computing. https://www.ibm.com/developerworks/cloud/. Accessed Sept 2010
  55. 55.
    Ip, W.H., Huang, M., Yung, K.L., Wang, D.: Genetic algorithm solution for a risk-based partner selection problem in a virtual enterprise. Comput. Oper. Res. 30(2), 213–231 (2003). doi:http://dx.doi.org/10.1016/S0305-0548(01)00092-2
  56. 56.
    Jarimo, T., Salo, A.: Multicriteria partner selection in virtual organizations with transportation costs and other network interdependencies. Trans. Syst. Man Cybern. C 39(1), 124–129 (2009)CrossRefGoogle Scholar
  57. 57.
    Kaya, M.: Mogamod: Multi-objective genetic algorithm for motif discovery. Expert Syst. Appl. 36(2, Part 1), 1039–1047 (2009). DOI: 10.1016/j.eswa.2007.11.008. http://www.sciencedirect.com/science/article/B6V03-4R53W74-M/2/e6cf5fe5acf73b555a60d248f6f59155
  58. 58.
    Klems, M.: Merrill Lynch Estimates “cloud computing” to be $ 100 Billion Market. http://web2.sys-con.com/node/604936. Accessed 2012
  59. 59.
    Ko, C.S., Kim, T., Hwang, H.: External partner selection using tabu search heuristics in distributed manufacturing. Int. J. Prod. Res. 39(17), 3959–3974 (2001)MATHCrossRefGoogle Scholar
  60. 60.
    Konak, A., Coit, D., Smith, A.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007 (2006)CrossRefGoogle Scholar
  61. 61.
    Li, W., Ping, L.: Trust model to enhance security and interoperability of cloud environment. In: CloudCom ’09: Proceedings of the 1st International Conference on Cloud Computing, pp. 69–79. Springer, Berlin (2009). doi:http://dx.doi.org/10.1007/978-3-642-10665-1_7
  62. 62.
    Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. J. Parallel Distr. Comput. 63(11), 1105–1122 (2003). doi:http://dx.doi.org/10.1016/S0743-7315(03)00108-4 Google Scholar
  63. 63.
    Maximilien, E.M., Ranabahu, A., Engehausen, R., Anderson, L.: Ibm altocumulus: a cross-cloud middleware and platform. In: OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and Applications, pp. 805–806. ACM, New York (2009). doi:http://doi.acm.org/10.1145/1639950.1640024
  64. 64.
  65. 65.
    Miller, R.: Brief power outage for Amazon data center. Data Center Knowledge. http://www.datacenterknowledge.com/archives/2009/12/10/power-outage-for-amazon-data-center/. Accessed 10 Dec 2009
  66. 66.
    Nepal, S., Zic, J.: A conflict neighbouring negotiation algorithm for resource services in dynamic collaborations. In: SCC ’08: Proceedings of the 2008 IEEE International Conference on Services Computing, pp. 283–290. IEEE Computer Society, Washington, DC (2008). doi:http://dx.doi.org/10.1109/SCC.2008.18
  67. 67.
    Nepal, S., Zic, J., Chan, J.: A distributed approach for negotiating resource contributions in dynamic collaboration. In: Proceedings of the Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 82–86. IEEE Computer Society, Washington, DC (2007). doi:http://dx.doi.org/10.1109/PDCAT.2007.1
  68. 68.
    OGF: Open cloud computing interface working group. http://www.occi-wg.org/. Accessed 2012
  69. 69.
    OpenQRM: The next generation, open-source data-center management platform. http://www.openqrm.com/. Accessed Sept 2010
  70. 70.
    Paul, I.: Google suffers another service outage. PC World. http://www.pcworld.com/article/165046/google_suffers_another_service_outage.html. Accessed 18 May 2009
  71. 71.
    Petersen, S.A., Matskin, M.: Agent interaction protocols for the selection of partners for virtual enterprises. In: CEEMAS’03: Proceedings of the 3rd Central and Eastern European conference on Multi-agent systems, pp. 606–615. Springer, Berlin (2003)Google Scholar
  72. 72.
    Ranjan, R., Buyya, R.: Decentralized overlay for federation of enterprise clouds. Handbook of Research on Scalable Computing Technologies. ISBN: 978-1-60566-661-7, IGI Global (2009)Google Scholar
  73. 73.
    Raphae, J.: Google says outage caused by traffic routing error. PC World. http://www.pcworld.com/article/164904/google_says_outage_caused_by_traffic_routing_error.html?tk=rel_news. Accessed 15 May 2009
  74. 74.
    Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Montero, R., Wolfsthal, Y., Elmroth, E., Cáceres, J., Ben-Yehuda, M., Emmerich, W., Galán, F.: The reservoir model and architecture for open federated cloud computing. IBM J. Res. Dev. 53(4), 535–545 (2009)CrossRefGoogle Scholar
  75. 75.
    Saen, R.F.: Suppliers selection in the presence of both cardinal and ordinal data. Eur. J. Oper. Res. 183(2), 741–747 (2007)MATHCrossRefGoogle Scholar
  76. 76.
    Salesforce.com: Application development with force.coms cloud computing platform. http://www.salesforce.com/platform/. Accessed Sept 2010
  77. 77.
    Sarker, R., Liang, K.H., Newton, C.: A new multiobjective evolutionary algorithm. Eur. J. Oper. Res. 140(1), 12–23 (2002)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Schofield, J.: Google angles for business users with platform as a service. The Guardian. http://www.guardian.co.uk/technology/2008/apr/17/google.software (2008). Accessed 2012
  79. 79.
    Shantanu, B.: Design of Iterative Mechanisms for Combinatorial Auctions and Exchanges. Ph.D Thesis, Computer Science and Automation Indian Institute of Science Bangalore (2004)Google Scholar
  80. 80.
    Sobolewski, M., Kolonay, R.M., Sobolewski, M., Kolonay, R.M.: Federated grid computing with interactive service-oriented programming. Int. J. Concurrent Eng. Res. Appl. 14, 55–66 (2006)CrossRefGoogle Scholar
  81. 81.
    Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Resource leasing and the art of suspending virtual machines. In: 11th IEEE International Conference on High Performance Computing and Communications, pp. 59–68, Seoul, South Korea (2009)Google Scholar
  82. 82.
    Stanley, M.: Technology trends. http://www.morganstanley.com. Accessed June 2008
  83. 83.
    Sun: Sun Microsystems’ open cloud platform. http://www.oracle.com/us/sun/index.html. Accessed Sept 2010
  84. 84.
    Suznjevic, M., Matijasevic, M., Dobrijevic, O.: Action specific massive multiplayer online role playing games traffic analysis: case study of world of warcraft. In: NetGames’08: Proceedings of the 7th ACM SIGCOMM Workshop on Network and System Support for Games, pp. 106–107. ACM, New York, USA (2008)Google Scholar
  85. 85.
    Suzuki, K., Yokoo, M.: Secure generalized vickrey auction using homomorphic encryption. In: Financial Cryptography. Lecture Notes in Computer Science, vol. 2742, pp. 239–249. Springer, Berlin (2003)Google Scholar
  86. 86.
    Tubanos, A.: Flexiscale suffers 18-hour outage. http://www.thewhir.com/web-hosting-news/103108_FlexiScale_Suffers_18_Hour_Outage. Accessed 31 Oct 2008
  87. 87.
    Van Hoesel, S., Muller, R.: Optimization in electronic markets: examples in combinatorial auctions. Netnomics 3(1), 23–33 (2001)CrossRefGoogle Scholar
  88. 88.
    Varvello, M., Voelker, G.M.: Second Life: a social network of humans and bots. In: Nosdav’2010, 20th International Workshop on Network and Operating Systems Support for Digital Audio and Video, 2–4 June 2010, Amsterdam, The Netherlands (2010). doi:10.1145/1806565.1806570Google Scholar
  89. 89.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16, 8–37 (1961)CrossRefGoogle Scholar
  90. 90.
    Wang, Z.J., Xu, X.F., Zhan, D.C.: Genetic algorithms for collaboration cost optimization-oriented partner selection in virtual enterprises. Int. J. Prod. Res. 47(4), 859–881 (2009)CrossRefGoogle Scholar
  91. 91.
    Williams, A.: Top 5 cloud outages of the past two years: Lessons Learned. http://www.readwriteweb.com/cloud/2010/02/top-5-cloud-outages-of-the-pas.php. Accessed Feb 2010
  92. 92.
    Wu, N., Su, P.: Selection of partners in virtual enterprise paradigm. Robot. Comput. Integr. Manuf. 21(2), 119–131 (2005). DOI: 10.1016/j.rcim.2004.05.006. http://www.sciencedirect.com/science/article/B6V4P-4D4D1GP-2/2/ef5b5f277e3dc17aadba73be632c2771
  93. 93.
    Yang, T., Hung, C.C.: Multiple-attribute decision making methods for plant layout design problem. Robot. Comput. Integr. Manuf. 23(1), 126–137 (2007). doi:http://dx.doi.org/10.1016/j.rcim.2005.12.002
  94. 94.
    Ye, F., Li, Y.N.: Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information. Expert Syst. Appl. 36(5), 9350–9357 (2009). doi:http://dx.doi.org/10.1016/j.eswa.2009.01.015
  95. 95.
    Yeh, W.C., Chuang, M.C.: Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert. Syst. Appl. 38(4), 4244–4253 (2011)CrossRefGoogle Scholar
  96. 96.
    Yen, G., Lu, H.: Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Trans. Evol. Comput. 7(3), 253–274 (2003)CrossRefGoogle Scholar
  97. 97.
    Yeo, C.S., Venugopal, S., Chu, X., Buyya, R.: Autonomic metered pricing for a utility computing service. Future Generat. Comput. Syst. 26(8), 1368–1380 (2010). doi:http://dx.doi.org/10.1016/j.future.2009.05.024
  98. 98.
    Yokoo, M., Suzuki, K.: Secure multi-agent dynamic programming based on homomorphic encryption and its application to combinatorial auctions. In: AAMAS ’02: Proceedings of the first international joint conference on Autonomous agents and multiagent systems, pp. 112–119. ACM, New York (2002). doi:http://doi.acm.org/10.1145/544741.544770
  99. 99.
    Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud computing. In: Grid Computing Environments Workshop, 2008. GCE ’08, pp. 1–10 (2008). doi:10.1109/GCE.2008.4738443. http://dx.doi.org/10.1109/GCE.2008.4738443
  100. 100.
    Zeng, Z., Li, Y., Li, S., Zhu, W.: A new algorithm for partner selection in virtual enterprise. In: PDCAT ’05: Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications and Technologies, pp. 884–886. IEEE Computer Society, Washington, DC (2005). doi:http://dx.doi.org/10.1109/PDCAT.2005.22
  101. 101.
    Zhong, Y., Jian, L., Zijun, W.: An integrated optimization algorithm of GA and ACA-based approaches for modeling virtual enterprise partner selection. SIGMIS Database 40(2), 37–56 (2009)CrossRefGoogle Scholar
  102. 102.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100. International Center for Numerical Methods in Engineering, Athens, Greece (2001)Google Scholar
  103. 103.
    Zizler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Mohammad Mehedi Hassan
    • 1
  • Eui-Nam Huh
    • 2
  1. 1.College of Computer and Information Sciences, Chair of Pervasive and Mobile ComputingKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Computer Engineering Kyung Hee UniversityCollege of Electronics and InformationGyeonggi-doSouth Korea

Personalised recommendations