Advertisement

On a Relationship Between Graph Realizability and Distance Matrix Completion

  • Leo LibertiEmail author
  • Carlile Lavor
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

We consider a certain subclass of Henneberg-type edge-weighted graphs which is related to protein structure, and discuss an algorithmic relationship between the Distance Geometry Problem and the Euclidean Distance Matrix Completion Problem.

References

  1. 1.
    Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)zbMATHGoogle Scholar
  2. 2.
    Cremona, L.: Le figure reciproche nella statica grafica. G. Bernardoni, Milano (1872)zbMATHGoogle Scholar
  3. 3.
    Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22, 365–375 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gunther, H.: NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry. Wiley, New York (1995)Google Scholar
  5. 5.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Henneberg, L.: Die Graphische Statik der starren Systeme. Teubner, Leipzig (1911)zbMATHGoogle Scholar
  7. 7.
    John, A.L.S.: Geometric constraint systems with applications in cad and biology. Ph.D. thesis, University of Massachusetts at Amherst (2008)Google Scholar
  8. 8.
    Laurent, M.: Matrix completion problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1967–1975 Springer, New York (2009)Google Scholar
  9. 9.
    Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. doi:10.1007/s11590-011-0302-6, 6:783–796 (2012)Google Scholar
  10. 10.
    Lavor, C., Liberti, L., Maculan, N.: The discretizable molecular distance geometry problem. Tech. Rep. q-bio/0608012, arXiv (2006)Google Scholar
  11. 11.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. doi:10.1007/s10589-011-9402-6, 52:115–146 (2012)Google Scholar
  12. 12.
    Lavor, C., Liberti, L., Mucherino, A.: The iBranch-and-Prune algorithm for the discretizable molecular distance geometry problem with interval data. J. Global Optim. (accepted) doi: 10.1007/s10898-011-9799-6Google Scholar
  13. 13.
    Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: An artificial backbone of hydrogens for finding the conformation of protein molecules. In: Proceedings of the Computational Structural Bioinformatics Workshop, pp. 152–155. IEEE, Washington, DC (2009)Google Scholar
  14. 14.
    Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Computing artificial backbones of hydrogen atoms in order to discover protein backbones. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 751–756. IEEE, Mragowo (2009)Google Scholar
  15. 15.
    Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: Discrete approaches for solving molecular distance geometry problems using NMR data. Int. J. Comput. Biosci. 1, 88–94 (2010)Google Scholar
  16. 16.
    Lavor, C., Mucherino, A., Liberti, L., Maculan, N.: On the computation of protein backbones by using artificial backbones of hydrogens. J. Global Optim. 50, 329–344 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of solutions of the discretizable molecular distance geometry problem. In: Combinatorial Optimization, Constraints and Applications (COCOA11). LNCS, vol. 6831, pp. 322–342. Springer, New York (2011)Google Scholar
  19. 19.
    Menger, K.: Untersuchungen über allgemeine metrik. Mathematische Annalen 103, 466–501 (1930). doi:10.1007/BF01455705MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of the International Conference on Computational Biology, vol. 58. World Academy of Science, Engineering and Technology, pp. 349–353 (2009)Google Scholar
  21. 21.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. (accepted) doi: 10.1007/s11590-011-0358-3Google Scholar
  22. 22.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N.: On the definition of artificial backbones for the discretizable molecular distance geometry problem. Mathematica Balkanica 23, 289–302 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mucherino, A., Lavor, C., Liberti, L., Talbi, E.G.: On suitable parallel implementations of the branch & prune algorithm for distance geometry. In: Proceedings of the Grid5000 Spring School. Lille, France (2010)Google Scholar
  24. 24.
    Mucherino, A., Lavor, C., Liberti, L., Talbi, E.G.: A parallel version of the branch & prune algorithm for the molecular distance geometry problem. In: Proceedings of the ACS/IEEE International Conference on Computer Systems and Applications (AICCSA10). IEEE, Hammamet, Tunisia (2010)Google Scholar
  25. 25.
    Mucherino, A., Liberti, L., Lavor, C.: MD-jeep: an implementation of a branch-and-prune algorithm for distance geometry problems. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) Mathematical Software. LNCS, vol. 6327, pp. 186–197. Springer, New York (2010)Google Scholar
  26. 26.
    Porta, J., Ros, L., Thomas, F.: Inverse kinematics by distance matrix completion. In: Proceedings of the 12th International Workshop on Computational Kinematics, pp. 1–9 (2005)Google Scholar
  27. 27.
    Saviotti, C.: Nouvelles méthodes pour le calcul des travures réticulaires. In: Appendix to L. Cremona, “Les figures réciproques en statique graphique”, pp. 37–100. Gauthier-Villars, Paris (1885)Google Scholar
  28. 28.
    Saviotti, C.: La statica grafica: Lezioni. U. Hoepli, Milano (1888)Google Scholar
  29. 29.
    Schlick, T.: Molecular modelling and simulation: an interdisciplinary guide. Springer, New York (2002)Google Scholar
  30. 30.
    Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Struct. Topology 11, 21–69 (1985)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LIX, Ecole PolytechniquePalaiseauFrance
  2. 2.Department of Applied Mathematics (IMECC-UNICAMP)State University of CampinasCampinas - SPBrazil

Personalised recommendations