Advertisement

Multistart Branch and Bound for Large Asymmetric Distance-Constrained Vehicle Routing Problem

  • Samira AlmoustafaEmail author
  • Said Hanafi
  • Nenad Mladenović
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

In this chapter we revise and modify an old branch-and-bound method for solving the asymmetric distance-constrained vehicle routing problem suggested by Laporte et al. in 1987. It is based on reformulating distance-constrained vehicle routing problem into a travelling salesman problem and use of assignment problem as a lower bounding procedure. In addition, our algorithm uses the best-first strategy and new tolerance-based branching rules. Since our method was fast but memory consuming, it could stop before optimality is proven. Therefore we introduce the randomness, in case of ties, in choosing the node of the search tree. If an optimal solution is not found, we restart our procedure. In that way we get multistart branch-and-bound method. As far as we know instances we solved exactly (up to 1,000 customers) are much larger than instances considered for other VRP models from the recent literature. So, despite its simplicity, this proposed algorithm is capable of solving the largest instances ever solved in the literature. Moreover, this approach is general and may be used in solving other types of vehicle routing problems.

References

  1. 1.
    Almoustafa, S., Goldengorin,B., Tso, M., Mladenović, N.: Two new exact methods for asymmetric distance-constrained vehicle routing problem. Proceedings of SYM-OP-IS. Belgrade, pp. 297–300 (2009)Google Scholar
  2. 2.
    Balas, E., Toth, P.: Branch and bound methods. In: Lawer, et al. (eds.) The Traveling Salesman Problem, pp. 361–401. Wiley, Chichester (1985)Google Scholar
  3. 3.
    Baldacci, R., Mingozzi, A.: An unified exact method for solving different classes of vehicle routing problems. Math. Program. Ser. A 120(2), 347–380 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baldacci, R., Toth, P., Vigo, D.: Recent advances in vehicle routing exact algorithms. 4OR 5(4), 269–298 (2007)Google Scholar
  5. 5.
    Baldacci, R., Mingozzi, A., Roberti, R.: Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints (invited review). Eur. J. Oper. Res. doi:10.1016/j.ejor.2011.07.037, 218(1), 1–6 (2011, in press)Google Scholar
  6. 6.
    Christofides, N., Mingozzi, A., Toth, P.: State space relaxation procedures for the computation of bounds to routing problems. Networks 11(2), 145–164 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Clarke, G., Wright, J. V.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)CrossRefGoogle Scholar
  8. 8.
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410 (1954)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goldengorin, B., Jager, G., Molitor, P.: Tolerances applied in combinatorial optimization. J. Comp. Sci. 2(9), 716–734 (2006)CrossRefGoogle Scholar
  10. 10.
    Haimovich, M., Rinnooy Kan, A.H.G., Stougie, L.: Analysis of heuristic routing problems. In: Golden, et al. (eds.) Vehicle Routing: Methods and Studies, pp. 47–61. North Holland, Amsterdam (1988)Google Scholar
  11. 11.
    Hansen, P., Mladenović, N., Moreno Pé, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)Google Scholar
  12. 12.
    Jonker, R., Volgenant, A.: Improving the hungarian assignment algorithm. Oper. Res. Lett. 5(4), 171–175 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kara, I.: Two indexed polynomial size formulations for vehicle routing problems. Technical Report (2008/01). Baskent University, Ankara/Turkey (2008)Google Scholar
  14. 14.
    Koltai, T., Terlaky, T.: The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming. Int. J. Prod. Econ. 65(3), 257–274 (2000)CrossRefGoogle Scholar
  15. 15.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)CrossRefGoogle Scholar
  16. 16.
    Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Laporte, G.: What you should know about the vehicle routing problem. Naval Res. Logist. 54(8), 811–819 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Laporte, G., Nobert, Y.: Exact algorithms for the vehicle routing problem. Ann. Discrete Math. 31, 147–184 (1987)MathSciNetGoogle Scholar
  19. 19.
    Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and distance restractions. Oper. Res. 33(5), 1050–1073 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Laporte, G., Nobert, Y., Taillefer, S.: A branch and bound algorithm for the asymmetrical distance-constrained vehicle routing problem. Math. Model. 9(12), 857–868 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lawer, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-Interscience series in Discrete Mathematics. Chichester, Wiley (1985)Google Scholar
  22. 22.
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Some simple applications of the traveling salesman problem. Oper. Res. Q. 26(4), 717–734 (1975)Google Scholar
  23. 23.
    Letchford. A. N., Salazar-Gonźalez, J.J.: Projection results for vehicle routing. Math. Program. Ser. B. 105, 251–274 (2006)Google Scholar
  24. 24.
    Lin, C., Wen, U.: Sensitivity analysis of the optimal assignment. Discrete Optim. 149(1), 35–46 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Mladenović, N., Hansen, P.: Variable neighbourhood search. Comp. Oper. Res. 24(11), 1097–1100 (1997)zbMATHCrossRefGoogle Scholar
  26. 26.
    Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Discrete Math. Optim. Wiley, New York (1988)zbMATHGoogle Scholar
  27. 27.
    Paschos, V.Th.: An overview on polynomial approximation of NP-hard problems. Yugoslav J. Oper. Res. 19(1), 3–40 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Pessoa, A., Poggi de Aragão, M., Uchoa, E.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, B., et al. (eds.) The Vehicle Routing Problem Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, Springer, New York, vol. 43, Part II, pp. 297–325 (2008)Google Scholar
  29. 29.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2002)zbMATHCrossRefGoogle Scholar
  30. 30.
    Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based branch and bound algorithms for the ATSP. Eur. J. Oper. Res. 189, 775–788 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Volgenant, A.: An addendum on sensitivity analysis of the optimal assignment. Eur. J. Oper. Res. 169(1), 338–339 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Samira Almoustafa
    • 1
    Email author
  • Said Hanafi
    • 2
  • Nenad Mladenović
    • 1
  1. 1.Brunel UniversityUxbridgeUK
  2. 2.Lamih-Universite de ValenciennesValenciennesFrance

Personalised recommendations