Advertisement

Correcting Certain Estimation Methods for the Generalized Pareto Distribution

  • Jelena JockovićEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

Generalized Pareto distributions (GPD) are widely used for modeling excesses over high thresholds. When its shape parameter is positive, the GPD has a finite upper bound that is a function of the distribution parameters. A well-known problem when estimating GPD parameters is inconsistency with the sample data, which is that one or more sample observations exceed the estimated upper bound. This paper proposes a new, general technique to overcome the inconsistency problem and improve performance of the existing GPD estimation methods. The technique is successfully applied to method-of-moments and method-of-probability-weighted-moments estimates, and, due to its flexibility, can be also applied to other estimation methods and distributions.

Key word

Generalized Pareto distribution Feasible estimates Method of moments Method of probability weighted moments 

Notes

Acknowledgements

This work is supported by the Ministry of Education and Science of the Republic of Serbia, Grant nos. 174012 and TR34007.

The author would like to thank the editors and the referees for their useful comments and suggestions.

References

  1. 1.
    Ashkar, F., Tatsambon, C.N.: Revisiting some estimation methods for the generalized Pareto distribution. J. Hydrol. 346, 136–143 (2007)CrossRefGoogle Scholar
  2. 2.
    Balkema, A., de Haan, L.: Residual life time at great age. Ann. Prob. 2, 792–804 (1974)zbMATHCrossRefGoogle Scholar
  3. 3.
    Castillo, E., Hadi, A.S.: Fitting the generalized Pareto distribution to data. J. Am. Stat. Assoc. 92(440), 1609–1620 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. Roy. Stat. Soc. Ser. B (Methodological), 52(3), 393–442 (1990)Google Scholar
  5. 5.
    de Zea Bermudez, P., Kotz, S.: Parameter estimation of the generalized Pareto distribution – Parts 1 and 2. J. Stat. Plann. Infer. 140, 1353–1373 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dupuis, D.J.: Estimating the probability of obtaining nonfeasible parameter estimates of the generalized Pareto distribution. J. Stati. Comput. Simulat. 54, 197–209 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dupuis, D.J.: Exceedances over high thresholds: a guide to threshold selection. Extremes 1(3), 251–261 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dupuis, D.J., Tsao, M.: A hybrid estimator for generalized Pareto and extreme-value distributions. Comm. Stat. Theor. Meth. 27(4), 925–941 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Embrechts, P., Kluppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (2003)Google Scholar
  10. 10.
    Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, R.: Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Res. Res. 15(5), 1049–1054 (1979)CrossRefGoogle Scholar
  11. 11.
    Hosking, J.R.M., Wallis, J.R. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Juarez, S., Schucany, W.: Robust and efficient estimation for the generalized Pareto distribution. Extremes 7, 237–251 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mackay, E., Challenor, P., Bahaj, A.: A comparison of estimators for the generalised Pareto distribution. Ocean Eng. 38, 1338–1346 (2011)CrossRefGoogle Scholar
  14. 14.
    Peng, L., Welsh, A.H.: Robust estimation of the generalized Pareto distribution. Extremes 4(1), 53–65 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rasmussen, P.F., Generalized probability weighted moments: application to the generalized Pareto distribution. Water Res. Res. 37(6), 1745–1751 (2001)CrossRefGoogle Scholar
  17. 17.
    Reiss, R.D., Thomas, M.: Statistical analysis of extreme values. Birkhauser, Basel (1997)zbMATHGoogle Scholar
  18. 18.
    Zhang, J.: Likelihood moment estimation for the generalised Pareto distribution. Aust. N. Z. J. Stat. 49(1), 69–77 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Zhang, J., Stephens, M.A.: A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51(3), 316–325 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics and Mathematics, Faculty of PharmacyUniversity of BelgradeBelgradeSerbia

Personalised recommendations