Advertisement

Duality for Multiple Objective Fractional Programming with Generalized Type-I Univexity

  • Ioan M. Stancu-Minasian
  • Andreea Mădălina StancuEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

In this paper, a multiobjective fractional subset programming problem (Problem (P)) is considered. A new class of \(\left(\mathcal{F},b,\phi,\rho,\theta \right)\) -type-I univex function is introduced and a general dual model for (P) is presented. Based on these functions, weak, strong and converse duality theorems are derived. Almost all results presented in the literature were obtained under the assumption that the function is sublinear in the third argument. Here, our results hold assuming only the convexity of this one.

References

  1. 1.
    Bătătorescu, A., Preda, V., Beldiman, M.: On higher order duality for multiobjective programming involving generalized \(\left(\mathcal{F},\rho,\gamma,b\right)\) -convexity. Math. Rep. 9(59), 161–174 (2007)Google Scholar
  2. 2.
    Bector, C.R., Bhatia, D., Pandey, S.: Duality for multiobjective fractional programming involving n-set functions. J. Math. Anal. Appl. 186(3), 747–768 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chinchuluun, A., Yuan, D., Pardalos, P.M.: Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity. Ann. Oper. Res. 154(1), 133–147 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Corley, H.W.: Optimization theory for n-set functions. J. Math. Anal. Appl. 127(1), 193–205 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Lee, T.Y.: Generalized convex set functions. J. Math. Anal. Appl. 141(1), 278–290 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Lin, L.J.: On the optimality of differentiable nonconvex n-set functions. J. Math. Anal. Appl. 168(2), 351–366 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Mishra, S.K.: Duality for multiple objective fractional subset programming with generalized \(\left(\mathcal{F},\rho,\sigma,\theta \right)\) -V-type-I functions. J. Global Optim. 36(4), 499–516 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Morris, R.J.T.: Optimal constrained selection of a measurable subset. J. Math. Anal. Appl. 70(2), 546–562 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Preda, V.: On minmax programming problems containing n-set functions. Optimization 22(4), 527–537 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Preda, V.: On efficiency and duality for multiobjective programms. J. Math. Anal. Appl. 166(2), 365–377 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Preda, V.: On duality of multiobjective fractional measurable subset selection problems, J. Math. Anal. Appl. 196(2), 514–525 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Preda, V., Stancu-Minasian, I.M., Beldiman, M., Stancu, A.: Optimality and duality for multiobjective programming with generalized V-type I univexity and related n-set functions. Proc. Rom. Acad. Ser. A 6(3), 183–191 (2005)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Preda, V., Stancu-Minasian, I.M., Beldiman, M., Stancu, A.: Generalized V-univexity type-I for multiobjective programming problems with n-set function. J. Global Optim. 44(1), 131–148 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Stancu-Minasian, I.M., A sixth bibliography of fractional programming. Optimization 55(4), 405–428 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Stancu-Minasian, I.M., Preda, V.: Optimality conditions and duality for programming problems involving set and n-set functions: a survey. J. Stat. Manag. Syst. 5(1–3), 175–207 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Yuan, D.H., Liu, X.L., Chinchuluun, A., Pardalos, P.M., Nondiferentiable minimax fractional programming problems with (C; α ; ρ; d)-convexity. J. Optim. Theor. Appl. 129(1), 185–199 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Zalmai, G.J.: Efficiency conditions and duality models for multiobjective fractional subset programming problems with generalized \(\left(\mathcal{F},\alpha,\rho,\theta \right)\) -V-convex functions. Comp. Math. Appl. 43(12), 1489–1520 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zalmai, G.J.: Generalized \(\left(\mathcal{F},b,\phi,\rho,\theta \right)\) -univex n-set functions and global semiparametric sufficient efficiency conditions in multiobjective fractional subset programming. Int. J. Math. Math. Sci. 6, 949–973 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ioan M. Stancu-Minasian
    • 1
  • Andreea Mădălina Stancu
    • 1
    Email author
  1. 1.Institute of Mathematical Statistics and Applied Mathematics, of the Romanian AcademyBucharestRomania

Personalised recommendations