Advertisement

Moderately Exponential Approximation: Bridging the Gap Between Exact Computation and Polynomial Approximation

  • Vangelis Th. PaschosEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 31)

Abstract

This paper proposes a way to bring together two seemingly “foreign” domains that are the polynomial approximation and the exact computation for NP-hard problems. We show how one can match ideas from both areas in order to design approximation algorithms achieving ratios unachievable in polynomial time (unless a very unlikely complexity conjecture is confirmed) with worst-case complexity much lower (though super-polynomial) than that of an exact computation.

Keywords

Polynomial Time Approximation Ratio Polynomial Approximation Exact Computation Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

References

  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. J. Assoc. Comput. Mach. 45(3), 501–555 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Berge, C.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)zbMATHGoogle Scholar
  4. 4.
    Berman, P., Fujito, T.: On the approximation properties of independent set problem in degree 3 graphs. In: Proceedings of the International Workshop on Algorithms and Data Structures, WADS’95. LNCS, vol. 955, pp. 449–460. Springer, Berlin (1995)Google Scholar
  5. 5.
    Bjorklund, A., Husfeldt, T.: Inclusion-exclusion algorithms for counting set partitions. In: Proceedings of the FOCS’06, pp. 575–582 (2006)Google Scholar
  6. 6.
    Boria, N., Bourgeois, N., Escoffier, B., Paschos, V.Th.: Exponential approximation schemata for some network design problems. Cahier du LAMSADE 303, LAMSADE, Université Paris-Dauphine. Available at http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-303. (2011)
  7. 7.
    Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: Fast algorithms for max independent set. Algorithmica vol. 62, 1–2, pp. 382–415 (2012)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bourgeois, N., Della Croce, F., Escoffier, B., Paschos, V.Th.: Exact algorithms for dominating clique problems. In: Dong, Y., Du, D.Z., Ibarra, O. (eds.) Proceedings of the International Symposium on Algorithms and Computation, (ISAAC’09). LNCS, vol. 5878, pp. 4–13. Springer, Berlin (2009)Google Scholar
  9. 9.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of combinatorial problems by moderately exponential algorithms. In: Dehne, F., Gavrilova, M., Sack, J.R., Tóth, C.D. (eds.) Proceedings of the Algorithms and Data Structures Symposium, (WADS’09). LNCS, vol. 5664, pp. 507–518. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 10.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of min coloring by moderately exponential algorithms. Inform. Process. Lett. 109(16), 950–954 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: Efficient approximation of min set cover by moderately exponential algorithms. Theoret. Comput. Sci. 410(21–23), 2184–2195 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bourgeois, N., Escoffier, B., Paschos, V.Th. Patt-Shamir B., Ekim T.: Fast algorithms for min independent dominating set. In: Proceedings of the Colloquium on Structural Information & Communication Complexity, (SIROCCO’10). LNCS, vol. 6058, 247–261 Spinger (2010)Google Scholar
  13. 13.
    Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: A bottom-up method and fast algorithms for max independent set. In: Kaplan, H. (ed.) Proceedings of the Scandinavian Symposium and Workshops on Algorithm Theory, (SWAT’10). LNCS, vol. 6139, pp. 62–73. Spinger, Berlin (2010)Google Scholar
  14. 14.
    Bourgeois, N., Escoffier, B., Paschos, V.Th.: Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms. Discrete Appl. Math. 159(17), 1954–1970 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Brankovic, L., Fernau, H.: Combining two worlds: parameterized approximation for vertex cover. In: Cheong, O., Chwa, K.Y., Park, K. (eds.) Proceedings of the International Symposium on Algorithms and Computation, (ISAAC’10). LNCS, vol. 6506, pp. 390–402. Springer, Berlin (2010)Google Scholar
  16. 16.
    Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32(6), 547–556 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cai, L., Huang, X.: Fixed-parameter approximation: conceptual framework and approximability results. In: Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of the International Workshop on Parameterized and Exact Computation, (IWPEC’06). LNCS, vol. 4169, pp. 96–108. Springer, Berlin (2006)CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Grohe, M., Grüber, M.: On parameterized approximability. In: Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of the International Workshop on Parameterized and Exact Computation, (IWPEC’06). LNCS, vol. 4169, pp. 109–120. Springer, Berlin (2006)CrossRefGoogle Scholar
  19. 19.
    Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput. Sci. 411(40–42), 3701–3713 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cygan, M., Kowalik, L., Wykurz, M.: Exponential-time approximation of weighted set cover. Inform. Process. Lett. 109(16), 957–961 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than o(2n). In: Kaplan, H. (ed.) Proceedings of the Scandinavian Symposium and Workshops on Algorithm Theory, (SWAT’10). LNCS, vol. 6139, pp. 74–80. Springer, Berlin (2010)Google Scholar
  22. 22.
    Demange, M., Paschos, V.Th.: On an approximation measure founded on the links between optimization and polynomial approximation theory. Theoret. Comput. Sci. 158, 117–141 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  24. 24.
    Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized approximation problems. In: Bodlaender, H.L., Langston, M.A. (eds.) Proceedings of the International Workshop on Parameterized and Exact Computation, (IWPEC’06). LNCS, vol. 4169, pp. 121–129. Springer, Berlin (2006)CrossRefGoogle Scholar
  25. 25.
    Duh, R., Fürer, M.: Approximation of k-set cover by semi-local optimization. In: Proceedings of the STOC’97, pp. 256–265 (1997)Google Scholar
  26. 26.
    Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proceedings of the Symposium on Discrete Algorithms, (SODA’01), pp. 329–337 (2001)Google Scholar
  27. 27.
    Escoffier, B., Paschos, V.Th., Tourniaire, E., Manindra A., S.B. Cooper and Angsheng Li.: Approximating MAX SAT by moderately exponential algorithms. Cahier du LAMSADE 303, LAMSADE, Université Paris-Dauphine. Available at http://www.lamsade.dauphine.fr/sites/default/IMG/pdf/cahier-304 Springer, LNCS, vol. 7287, 202–213 (2012)
  28. 28.
    Feige, U.: A threshold of lnn for approximating set cover. J. Assoc. Comput. Mach. 45, 634–652 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. EATCS. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  30. 30.
    Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination – a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Proceedings of the ICALP’05. LNCS, vol. 3580, pp. 191–203. Springer, Berlin (2005)Google Scholar
  31. 31.
    Fürer, M., Gaspers, S., Kasiviswanathan, S.P.: An exponential time 2-approximation algorithm for bandwidth. In: Proceedings of the International Workshop on Parameterized and Exact Computation, (IWPEC’09). LNCS, vol. 5917, pp. 173–184. Springer, Berlin (2009)Google Scholar
  32. 32.
    Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46, 169–172 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS, Boston (1997)Google Scholar
  35. 35.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)zbMATHCrossRefGoogle Scholar
  37. 37.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. In: Proceedings of the Annual Conference on Computational Complexity, (CCC’03), pp. 379–386 (2003)Google Scholar
  38. 38.
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8, 232–248 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Paschos, V.Th.: Complexité et approximation polynomiale. Hermès, Paris (2004)zbMATHGoogle Scholar
  40. 40.
    Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In: Proceedings of the Symposium on Discrete Algorithms, (SODA’06), pp. 1–10 (2006)Google Scholar
  41. 41.
    Vazirani, V.: Approximation Algorithms. Springer, Berlin (2001)Google Scholar
  42. 42.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Juenger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka! You shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Berlin (2003)CrossRefGoogle Scholar
  43. 43.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the STOC’06, pp. 681–690 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LAMSADECNRS UMR 7243 - Université Paris-Dauphine and Institut Universitaire de FranceParisFrance

Personalised recommendations