Advertisement

Using a Distributed SDP Approach to Solve Simulated Protein Molecular Conformation Problems

  • Xingyuan Fang
  • Kim-Chuan Toh
Chapter

Abstract

This chapter presents various enhancements to the DISCO algorithm (originally introduced by Leung and Toh(SIAM J. Sci. Comput. 31:4351–4372, 2009) for anchor-free graph realization in \({\mathbb{R}}^{d}\)) for applications to conformation of protein molecules in \({\mathbb{R}}^{3}\). In our enhanced DISCO algorithm for simulated protein molecular conformation problems, we have incorporated distance information derived from chemistry knowledge such as bond lengths and angles to improve the robustness of the algorithm. We also designed heuristics to detect whether a subgroup is well localized and significantly improved the robustness of the stitching process. Tests are performed on molecules taken from the Protein Data Bank. Given only 20% of the interatomic distances less than 6Åthat are corrupted by high level of noises (to simulate noisy distance restraints generated from nuclear magnetic resonance experiments), our improved algorithm is able to reliably and efficiently reconstruct the conformations of large molecules. For instance, given 20% of interatomic distances which are less than 6Åand are corrupted with 20% multiplicative noise, a 5,600-atom conformation problem is solved in about 30min with a root-mean-square deviation (RMSD) of less than 1Å.

Keywords

Protein Data Bank Pairwise Distance Multiplicative Noise Distance Data Distance Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashida, T., Tsunogae, Y., Tanaka, I., Yamane, T.: Peptide chain structure parameters, bond angles and conformationai angles from the cambridge structural database. Acta Crystallographica B43, 212–218 (1987)Google Scholar
  2. 2.
    Atkins, P.: Inorganic Chemistry. Oxford University Press, New York (2006)Google Scholar
  3. 3.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the third international symposium on Information processing in sensor networks, ACM Press, 46–54 (2004)Google Scholar
  4. 4.
    Biswas, P., Ye, Y.: A distributed method for solving semidefinite programs arising from ad hoc wireless sensor network localization. In: Hager, W.W. (ed.) Multiscale Optimization Methods and Applications, pp. 69–84. Springer, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Biswas, P., Liang, T.-C., Toh, K.-C., Wang, T.-C., Ye, Y.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3, 360–371 (2006)CrossRefGoogle Scholar
  6. 6.
    Biswas, P., Toh, K.-C., Ye, Y.: A distributed SDP approach for large scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30, 1251–1277 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cornell, W., Cieplak, P.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  8. 8.
    Cucuringu, M., Singer, A., Cowburn, D.: Eigenvector synchronization, graph rigidity and the molecule problem. arXiv:1111.3304v3 (2012)Google Scholar
  9. 9.
    Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data. J. Global Optim. 26, 321–333 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Engh, R., Huber, R.: Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallographica A47, 392–400. 1991.Google Scholar
  11. 11.
    Grooms, I.G., Lewis, R.M., Trosset, M.W.: Molecular embedding via a second-order dissimilarity parameterized approach. SIAM J. Sci. Comput. 31, 2733–2756 (2009)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Güler, O., Ye, Y.: Convergence behavior of interior point algorithms. Math. Program. 60, 215–228 (1993)MATHCrossRefGoogle Scholar
  13. 13.
    Havel, T.F.: A evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Progr. Biophys. Mol. Biol. 56, 43–78 (1991)CrossRefGoogle Scholar
  14. 14.
    Havel, T.F., Wüthrich, K.: A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of 1h-1h proximities in solution. Bull. Math. Biol. 46, 673–698 (1984)MATHGoogle Scholar
  15. 15.
    Havel, T.F., Kuntz, I.D., Crippen, G.M.: The combinatorial distance geometry approach to the calculation of molecular conformation. J. Theor. Biol. 104, 359–381 (1983)CrossRefGoogle Scholar
  16. 16.
    Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Laskowski, R., Moss, D.: Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993)CrossRefGoogle Scholar
  18. 18.
    Leung, N.-H., Toh, K.-C.: An sdp-based divide-and-conquer algorithm for large scale noisy anchor-free graph realization. SIAM J. Sci. Comput. 31, 4351–4372 (2009)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    McMurry, J.: Organic Chemistry. Thompson, Belmont (2008)Google Scholar
  21. 21.
    Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234 (1999)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    So, A.M.-C., Ye, Y.: Theory of semidefinite programming for sensor network localization. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 405–414 (2005)Google Scholar
  23. 23.
    Toh, K.-C., Todd, M.J., Tutuncu, R.H.: The SDPT3 web page: http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
  24. 24.
    Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite programming. Optim. Meth. Software 11, 545–581 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Trosset, M.W.: Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152 (1998)Google Scholar
  26. 26.
    Trosset, M.W.: Distance matrix completion by numerical optimization. Comput. Optim. Appl. 17, 11–22 (2000)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Trosset, M.W.: Extensions of classical multidimensional scaling via variable reduction. Comput. Stat. 17, 147–163 (2002)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Tutuncu, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95, 189–217 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Williams, G.A., Dugan, J.M., Altman, R.B.: Constrained global optimization for estimating molecular structure from atomic distances. J. Comput. Biol. 8, 523–547 (2001)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Zha, H.: A domain decomposition method for fast manifold learning. In: Proceedings of Advances in Neural Information Processing Systems, 18 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Operations Research and Financial EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations