DC Programming Approaches for Distance Geometry Problems



In this chapter, a so-called DCA method based on a DC (difference of convex functions) optimization approach for solving large-scale distance geometry problems is developed. Two main problems are considered: the exact and the general distance geometry problems. Different formulations of equivalent DC programs are introduced. Substantial subdifferential calculations permit to compute sequences of iterations in the DCA quite simply and allow exploiting sparsity in the large-scale setting. For improving the computational efficiency of the DCA schemes we investigate several techniques. A two-phase algorithm using shortest paths between all pairs of atoms to generate the complete dissimilarity matrix, a spanning trees procedure, and a smoothing technique are investigated in order to compute a good starting point (SP) for the DCAs. An important issue in the DC optimization approach is well exploited, say the nice effect of DC decompositions of the objective functions. For this purpose we propose several equivalent DC formulations based on the stability of Lagrangian duality and the regularization techniques. Finally, many numerical simulations of the molecular optimization problems with up to 12,567 variables are reported which prove the practical usefulness of the nonstandard nonsmooth reformulations, the globality of found solutions, the robustness, and the efficiency of our algorithms.


Distance Constraint Artificial Data Trust Region Method Regularization Technique Lagrangian Duality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alfakih, A.Y., Khandani, A., Wolkowicz, H.: An interior-point method for the Euclidean distance matrix completion problem. Research Report CORR 97-9, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadaGoogle Scholar
  2. 2.
    Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press (1953)Google Scholar
  3. 3.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)MATHGoogle Scholar
  4. 4.
    Le Thi H.A.: DC programming and DCA, available on the website http://lita.sciences.univ-metz.fr/~lethi/DCA.html
  5. 5.
    Demyanov, V.F., Vasilev, L.V.: Nondifferentiable optimization. Optimization Software, Inc. Publications Division, New York (1985)Google Scholar
  6. 6.
    De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J.R., et al. (eds.) Recent Developments in Statistics, pp. 133–145. North-Holland Publishing Company (1977)Google Scholar
  7. 7.
    De Leeuw, J.: Convergence of the majorization method for multidimensional scaling. Journal of Classification 5, 163–180 (1988)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22(1), 365–375 (2002)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Floudas, C., Adjiman, C.S., Dallwig, S., Neumaier, A.: A global optimization method, αBB, for general twice differentiable constrained NLPs – I: theoretical advances. Comput. Chem. Eng. 22, 11–37 (1998)CrossRefGoogle Scholar
  11. 11.
    Glunt, W., Hayden, T.L., Raydan, M.: Molecular conformation from distance matrices. J. Comput. Chem. 14, 114–120 (1993)CrossRefGoogle Scholar
  12. 12.
    Havel, T.F.: An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance. Progr. Biophys. Mol. Biol. 56, 43–78 (1991)CrossRefGoogle Scholar
  13. 13.
    Hendrickson, B.A.: The molecule problem: determining conformation from pairwise distances. Ph.D. thesis, Cornell University, Ithaca, New York (1991)Google Scholar
  14. 14.
    Hendrickson, B.A.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hirriart Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)Google Scholar
  16. 16.
    Huang, H.X., Liang, Z.A., Pardalos, P.M.: Some properties for the Euclidean distance matrix and positive semi-Definite matrix completion problems. Department of Industrial and Systems Engineering, University Florida (2001)Google Scholar
  17. 17.
    Krislock, N., Wolkowicz, H.: Euclidean distance matrices and applications. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 879–914 (2012)Google Scholar
  18. 18.
    Laurent, M.: Cuts, matrix completions and a graph rigidity. Math. Program. 79(1-3), 255–283 (1997)MathSciNetMATHGoogle Scholar
  19. 19.
    Le Thi, H.A.: Contribution à l’optimisation non convexe et l’optimisation globale: Théorie, Algorithmes et Applications. Habilitation à Diriger des Recherches, Université de Rouen, Juin (1997)Google Scholar
  20. 20.
    Le Thi, H.A., Le Hoai, M., Nguyen, V.V., Pham Dinh, T.: A DC Programming approach for Feature Selection in Support Vector Machines learning. Journal of Advances in Data Analysis and Classification 2(3), 259–278 (2008)Google Scholar
  21. 21.
    Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by d.c. algorithms. J. Global Optim. 11, 253–285 (1997)Google Scholar
  22. 22.
    Le Thi, H.A., Pham Dinh, T.: D.c. programming approach for large scale molecular optimization via the general distance geometry problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, pp. 301–339. Kluwer Academic Publishers (2000)Google Scholar
  23. 23.
    Le Thi, H.A., Pham Dinh, T.: Large scale molecular optimization from distance matrices by a d.c. optimization approach. SIAM J. Optim. 14(1), 77–114 (2003)Google Scholar
  24. 24.
    Le Thi, H.A., Pham Dinh, T.: A new algorithm for solving large scale molecular distance geometry problems. special issue of Applied Optimization, HighPerformance Algorithms and Software for Nonlinear Optimization, pp. 279–296. Kluwer Academic Publishers (2003)Google Scholar
  25. 25.
    Le Thi, H.A.: Solving large scale molecular distance geometry problems by a smoothing technique via the gaussian transform and d.c. programming. J. Global Optim. 27(4), 375–397 (2003)Google Scholar
  26. 26.
    Le Thi, H.A., Pham Dinh, T.: The DC programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)Google Scholar
  27. 27.
    Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Convergence analysis of DC algorithm for DC programming with subanalytic data. Research Report, National Institute for Applied Sciences (2009)Google Scholar
  28. 28.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Mahey, P., Pham Dinh, T.: Partial regularization of the sum of two maximal monotone operators. Math. Model. Numer. Anal. (M 2 AN) 27, 375–395 (1993)Google Scholar
  30. 30.
    Mahey, P., Pham Dinh, T.: Proximal decomposition of the graph of maximal monotone operator. SIAM J. Optim. 5, 454-468 (1995)Google Scholar
  31. 31.
    Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 8, 814–836 (1997)CrossRefGoogle Scholar
  32. 32.
    Moré, J.J., Wu, Z.: Issues in large-scale molecular optimization. preprint MCS-P539-1095, Argonne National Laboratory, Argonne, Illinois 60439, March 1996Google Scholar
  33. 33.
    Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. preprint MCS-P628-1296, Argonne National Laboratory, Argonne, Illinois 60439, December 1996Google Scholar
  34. 34.
    Pham Dinh, T.: Contribution à la théorie de normes et ses applications à l’analyse numérique. Thèse de Doctorat d’Etat Es Science, Université Joseph Fourier-Grenoble (1981)Google Scholar
  35. 35.
    Pham Dinh, T.: Convergence of subgradient method for computing the bound norm of matrices. Lin. Algebra. Appl. 62, 163–182 (1984)Google Scholar
  36. 36.
    Pham Dinh, T.: Algorithmes de calcul d’une forme quadratique sur la boule unité de la norme maximum. Numer. Math. 45, 377–440 (1985)Google Scholar
  37. 37.
    Pham Dinh, T.: Algorithms for solving a class of non convex optimization problems. Methods of subgradients. Mathematics for Optimization, Elsevier Science Publishers B.V., North-Holland (1986)Google Scholar
  38. 38.
    Pham Dinh, T.: Duality in d.c. (difference of convex functions) optimization. Subgradient methods. Trends in Mathematical Optimization, International Series of Numer Math., vol. 84, pp. 277–293. Birkhäuser (1988)Google Scholar
  39. 39.
    Pham Dinh, T., Le Thi, H.A.: Stabilité de la dualité lagrangienne en optimisation d.c. (différence de deux fonctions convexes). C.R. Acad. Paris, t.318, Série I, pp. 379–384 (1994)Google Scholar
  40. 40.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to d.c. programming: Theory, Algorithms and Applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Mathematica Vietnamica 22, 289–355 (1997)MathSciNetMATHGoogle Scholar
  41. 41.
    Pham Dinh, T., Le Thi, H.A.: D.c. optimization algorithms for solving the trust region subproblem. SIAM J. Optim. 8, 476–505 (1998)Google Scholar
  42. 42.
    Pham Dinh, T., Nguyen, C.N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Global Optim. 48(4), 595–632 (2010)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Polyak, B.: Introduction to optimization. Optimization Software, Inc. Publications Division, New York (1987)Google Scholar
  44. 44.
    Rockafellar, R.T.: Convex Analysis. Princeton University, Princeton (1970)MATHGoogle Scholar
  45. 45.
    Saxe, J.B.: Embeddability of weighted Graphs in k-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  46. 46.
    Souza, M., Xavier, A.E., Lavor, C., Maculan, N.: Hyperbolic smoothing and penalty techniques applied to molecular structure determination. Oper. Res. Lett. 39(6), 461–465 (2011)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Varga, R.: Matrix Iterative Analysis. Prentice Hall (1962)Google Scholar
  48. 48.
    Zou, Z., Richard, H.B., Schnabel, R.B.: A stochastic/pertubation global optimization algorithm for distance geometry problems. J. Global Optim. 11, 91–105 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Theoretical and Applied Computer Science (LITA EA 3097) UFR MIMUniversity of Lorraine, Ile du SaulcyMetzFrance
  2. 2.Laboratory of MathematicsNational Institute for Applied Sciences, RouenSaint-Etienne-du-RouvrayFrance

Personalised recommendations