Universal Rigidity of Bar Frameworks in General Position: A Euclidean Distance Matrix Approach

Chapter

Abstract

A configuration p in r-dimensional Euclidean space is a finite collection of labeled points \({p}^{1},\ldots ,{p}^{n}\) in \({\mathbb{R}}^{r}\) that affinely span \({\mathbb{R}}^{r}\). Each configuration p defines a Euclidean distance matrix \({D}_{p} = ({d}_{ij})\) = \((\vert \vert {p}^{i} - {p}^{j}\vert {\vert }^{2})\), where \(\vert \vert \cdot \vert \vert \) denotes the Euclidean norm. A fundamental problem in distance geometry is to find out whether or not a given proper subset of the entries of D p suffices to uniquely determine the entire matrix D p . This problem is known as the universal rigidity problem of bar frameworks. In this chapter, we present a unified approach for the universal rigidity of bar frameworks, based on Euclidean distance matrices (EDMs), or equivalently, on projected Gram matrices. This approach makes the universal rigidity problem amenable to semidefinite programming methodology. Using this approach, we survey some recently obtained results and their proofs, emphasizing the case where the points \({p}^{1},\ldots ,{p}^{n}\) are in general position.

Notes

Acknowledgements

Research supported by the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Alfakih, A.Y.: On rigidity and realizability of weighted graphs. Lin. Algebra. Appl. 325, 57–70 (2001)Google Scholar
  2. 2.
    Alfakih, A.Y.: On dimensional rigidity of bar-and-joint frameworks. Discrete. Appl. Math. 155, 1244–1253 (2007)Google Scholar
  3. 3.
    Alfakih, A.Y.: On the dual rigidity matrix. Lin. Algebra. Appl. 428, 962–972 (2008)Google Scholar
  4. 4.
    Alfakih, A.Y.: On the universal rigidity of generic bar frameworks. Contrib. Discrete. Math. 5, 7–17 (2010)Google Scholar
  5. 5.
    Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)Google Scholar
  6. 6.
    Alfakih, A.Y., Taheri, N., Ye, Y.: On stress matrices of (d + 1)-lateration frameworks in general position, to appear in Mathematical Programming (2012)Google Scholar
  7. 7.
    Alfakih, A.Y., Ye, Y: On affine motions and bar frameworks in general positions. Lin. Algebra. Appl. arXiv 1009.3318 (2010)Google Scholar
  8. 8.
    Connelly, R.: Rigidity and energy, Invent. Math. 66, 11–33 (1982)Google Scholar
  9. 9.
    Connelly, R.: Tensegrity structures: Why are they stable? In: Thorpe, M.F., Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 47–54. Kluwer Academic/Plenum Publishers (1999)Google Scholar
  10. 10.
    Connelly, R.: Generic global rigidity. Discrete. Comput. Geom. 33, 549–563 (2005)Google Scholar
  11. 11.
    Critchley, F.: On certain linear mappings between inner-product and squared distance matrices. Lin. Algebra. Appl. 105, 91–107 (1988)Google Scholar
  12. 12.
    Eren, T., Goldenberg, D.K., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, computation and randomization in network localization. In: IEEE Conference Proceedings, INFOCOM proceedings, pp. 2673–2684 (2004)Google Scholar
  13. 13.
    Gale, D.: Neighboring vertices on a convex polyhedron. In: Kuhn H.W., Tucker, A.W. (Eds.), Linear Inequalities and Related System, pp. 255–263. Princeton University Press, Princeton (1956)Google Scholar
  14. 14.
    Gortler, S.J., Healy, A.D., Thurston, D.P.: Characterizing generic global rigidity, Amer. J. Math. 132, 897–939 (2010)Google Scholar
  15. 15.
    Gortler, S.J., Thurston, D.P.: Characterizing the universal rigidity of generic frameworks, arXiv/1001.0172v1 (2009)Google Scholar
  16. 16.
    Gower, J.C.: Properties of Euclidean and non-Euclidean distance matrices. Lin. Algebra. Appl. 67, 81–97 (1985)Google Scholar
  17. 17.
    Grünbaum, B.: Convex Polytopes. Wiley, London (1967)Google Scholar
  18. 18.
    Lavor, C., Lee, J., Lee-St.John, A., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6, 783–796 (2012)Google Scholar
  19. 19.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  20. 20.
    Schoenberg, I.J.: Remarks to Maurice Fréchet’s article: Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 36, 724–732 (1935)Google Scholar
  21. 21.
    Young G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3, 19–22 (1938)Google Scholar
  22. 22.
    Zhu, Z., So, A.M-C., Ye, Y.: Universal rigidity: Towards accurate and efficient localization of wireless networks. In: IEEE Conference Proceedings, INFOCOM proceedings (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of WindsorWindsorCanada

Personalised recommendations