Skip to main content

The Organs at Risk and Radiation Tolerance Doses

  • Chapter
  • First Online:
Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer

Abstract

During the last two decades, early diagnosis and better treatment options have improved the survival rates of breast cancer patients [1]. Radiotherapy (RT) is an essential component of the treatment of patients with early and locally advanced disease and has been shown to reduce local recurrence risk by approximately 20% and breast cancer mortality risk by 5% [2]. However, RT-induced toxicities may manifest from months to decades after treatment and may be related to severe morbidity and mortality. Older RT techniques are particularly associated with an excess risk of non-breast cancer mortality, which was mainly from heart disease [2]. The goal of modern RT techniques is to improve the therapeutic ratio by increasing tumor control and decreasing toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buzdar A, Hunt K, Buchholz TA, et al. Improving survival of patients with breast cancer over the past 6 decades: The University of Texas M. D. Anderson Cancer Center experience. In: 2010 Breast Cancer Symposium, October 1–3, 2010 Washington, DC. Abstract no:176.

    Google Scholar 

  2. Early Breast Cancer Trialists Collaborative Group (EBCTCG). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106.

    Google Scholar 

  3. Li XA, Tai A, Arthur DW, et al. Variability of target and normal structure delineation for breast cancer radiotherapy: an RTOG Multi-Institutional and Multiobserver Study. Int J Radiat Oncol Biol Phys. 2009;73:944–51.

    Article  PubMed  Google Scholar 

  4. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  PubMed  CAS  Google Scholar 

  5. http://www.rtog.org/ClinicalTrials/ProtocolTable.aspx (2011). Accessed 20/11/2011.

  6. Marks LB, Bentzen SM, Deasy JO, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys. 2010;76:S70–6.

    Article  PubMed  Google Scholar 

  7. Gagliardi G, Constine LS, Moiseenko V, et al. Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys. 2010;76:S77–85.

    Article  PubMed  Google Scholar 

  8. Werner-Wasik M, Yorke E, Deasy J, et al. Radiation dose-volume effects in the esophagus. Int J Radiat Oncol Biol Phys. 2010;76:S86–93.

    Article  PubMed  Google Scholar 

  9. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9.

    Article  PubMed  Google Scholar 

  10. Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys. 2011;81:1442–57.

    Article  PubMed  Google Scholar 

  11. Halperin EC, Perez CA, Brady LW. Principles and practice of radiation oncology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 321–50.

    Google Scholar 

  12. Marks LB, Yu X, Vujaskovic Z, et al. Radiation-induced lung injury. Semin Radiat Oncol. 2003;13:333–45.

    Article  PubMed  Google Scholar 

  13. Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323–9.

    Article  PubMed  CAS  Google Scholar 

  14. Koh ES, Sun A, Tran TH, et al. Clinical dose-volume histogram analysis in predicting radiation pneumonitis in Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys. 2006;66:223–8.

    Article  PubMed  Google Scholar 

  15. Lind PA, Wennberg B, Gagliardi G, et al. Pulmonary complications following different radiotherapy techniques for breast cancer, and the association to irradiated lung volume and dose. Breast Cancer Res Treat. 2001;68:199–210.

    Article  PubMed  CAS  Google Scholar 

  16. Tsougos I, Mavroidis P, Rajala J, et al. Evaluation of dose–response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy. Phys Med Biol. 2005;50:3535–54.

    Article  PubMed  Google Scholar 

  17. Jaen J, Vazquez G, Alonso E, et al. Changes in pulmonary function after incidental lung irradiation for breast cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2006;65:1381–8.

    Article  PubMed  Google Scholar 

  18. Tsougos I, Mavroidis P, Theodorou K, et al. Clinical validation of the LKB model and parameter sets for predicting radiation-induced pneumonitis from breast cancer radiotherapy. Phys Med Biol. 2006;51:L1–9.

    Article  PubMed  Google Scholar 

  19. Blom-Goldman U, Svane G, Wennberg B, et al. Quantitative assessment of lung density changes after 3-D radiotherapy for breast cancer. Acta Oncol. 2007;46:187–93.

    Article  PubMed  Google Scholar 

  20. Kahan Z, Csenki M, Varga Z, et al. The risk of early and late lung sequelae after conformal radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2007;68:673–81.

    Article  PubMed  Google Scholar 

  21. Krengli M, Sacco M, Loi G, et al. Pulmonary changes after radiotherapy for conservative treatment of breast cancer: a prospective study. Int J Radiat Oncol Biol Phys. 2008;70:1460–7.

    Article  PubMed  Google Scholar 

  22. Bortfeld T, Schmidt-Ulrich R, De Neve W, Wazer DE, editors. Image-guided IMRT. New York: Springer; 2006. p. 317–81.

    Google Scholar 

  23. Jagsi R, Moran J, Marsh R, et al. Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.

    Article  PubMed  Google Scholar 

  24. Blom Goldman U, Wennberg B, Svane G, et al. Reduction of radiation pneumonitis by V20-constraints in breast cancer. Radiat Oncol. 2010;5:99.

    Article  PubMed  Google Scholar 

  25. Feng M, Moran JM, Koelling T, et al. Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2011;79:10–8.

    Article  PubMed  Google Scholar 

  26. Martel MK, Sahijdak WM, Ten Haken RK, et al. Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys. 1998;40:155–61.

    Article  PubMed  CAS  Google Scholar 

  27. Demirci S, Nam J, Hubbs JL, et al. Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys. 2009;73:980–7.

    Article  PubMed  Google Scholar 

  28. Hudson F, Coulshed D, D’Souza E, Baker C. Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol. 2010;54:53–61.

    Article  PubMed  CAS  Google Scholar 

  29. Hall WH, Guiou M, Lee NY, et al. Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2008;72:1362–7.

    Article  PubMed  Google Scholar 

  30. Schierle C, Winograd JM. Radiation-induced brachial plexopathy: review. Complication without a cure. J Reconstr Microsurg. 2004;20:149–52.

    Article  PubMed  Google Scholar 

  31. Bajrovic A, Rades D, Fehlauer F, et al. Is there a life-long risk of brachial plexopathy after radiotherapy of supraclavicular lymph nodes in breast cancer patients? Radiother Oncol. 2004;71:297–301.

    Article  PubMed  Google Scholar 

  32. Platteaux N, Dirix P, Hermans R, Nuyts S. Brachial plexopathy after chemoradiotherapy for head and neck squamous cell carcinoma. Strahlenther Onkol. 2010;186:517–20.

    Article  PubMed  Google Scholar 

  33. Pierce SM, Recht A, Lingos TI, et al. Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys. 1992;23:915–23.

    Article  PubMed  CAS  Google Scholar 

  34. Fowble BL, Solin LJ, Schultz DJ, Goodman RL. Ten year results of conservative surgery and irradiation for stage I and II breast cancer. Int J Radiat Oncol Biol Phys. 1991;21:269–77.

    Article  PubMed  CAS  Google Scholar 

  35. Kirova YM. Recent advances in breast cancer radiotherapy: evolution or revolution, or how to decrease cardiac toxicity? World J Radiol. 2010;2:103–18.

    Article  PubMed  Google Scholar 

  36. Cumberlin RL, Dritschilo A, Mossman KL. Carcinogenic effects of scattered dose associated with radiation therapy. Int J Radiat Oncol Biol Phys. 1989;17:623–9.

    Article  PubMed  CAS  Google Scholar 

  37. Boice JD, Harvey EB, Blettner M, et al. Cancer in the contralateral breast after radiotherapy for breast cancer. N Engl J Med. 1992;326:781–5.

    Article  PubMed  Google Scholar 

  38. Hong L, Hunt M, Chui C, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys. 1999;44:1155–64.

    Article  PubMed  CAS  Google Scholar 

  39. Amdur RJ, Mazzaferri EL. Essentials of thyroid cancer management, basic thyroid anatomy. 2005. p. 3–6.

    Google Scholar 

  40. Sklar C, Whitton J, Mertens A, et al. Abnormalities of the thyroid in survivors of Hodgkin’s disease: data from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2000;85:3227–32.

    Article  PubMed  CAS  Google Scholar 

  41. Mercado G, Adelstein DJ, Saxton JP, et al. Hypothyroidism: a frequent event after radiotherapy and after radiotherapy with chemotherapy for patients with head and neck carcinoma. Cancer. 2001;92:2892–7.

    Article  PubMed  CAS  Google Scholar 

  42. Johansen S, Reinertsen KV, Knutstad K, et al. Dose distribution in the thyroid gland following radiation therapy of breast cancer—a retrospective study. Radiat Oncol. 2011;6:68.

    Article  PubMed  CAS  Google Scholar 

  43. Dogan N, Cuttino L, Lloyd R, et al. Optimized dose coverage of regional lymph nodes in breast cancer: the role of intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68:1238–50.

    Article  PubMed  Google Scholar 

  44. Saibishkumar EP, MacKenzie MA, Severin D, et al. Skin-sparing radiation using intensity-modulated radiotherapy after conservative surgery in early-stage breast cancer: a planning study. Int J Radiat Oncol Biol Phys. 2008;70:485–91.

    Article  PubMed  Google Scholar 

  45. Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol. 2008;26:2085–92.

    Article  PubMed  Google Scholar 

  46. McDonald MW, Godette KD, Butker EK, et al. Long-term outcomes of IMRT for breast cancer: a single-institution cohort analysis. Int J Radiat Oncol Biol Phys. 2008;72:1031–40.

    Article  PubMed  Google Scholar 

  47. Bhatnagar AK, Brandner E, Sonnik D, et al. Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat. 2006;96:41–6.

    Article  PubMed  Google Scholar 

  48. Williams TM, Moran JM, Hsu SH, et al. Contralateral breast dose after whole-breast irradiation: an analysis by treatment technique. Int J Radiat Oncol Biol Phys. 2012;82:2079–85.

    Article  PubMed  Google Scholar 

  49. Beckham WA, Popescu CC, Patenaude VV, et al. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys. 2007;69(3):918–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senem Demirci Alanyalı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alanyalı, S.D., Ceylan, N., Haydaroglu, A. (2013). The Organs at Risk and Radiation Tolerance Doses. In: Haydaroglu, A., Ozyigit, G. (eds) Principles and Practice of Modern Radiotherapy Techniques in Breast Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5116-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5116-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5115-0

  • Online ISBN: 978-1-4614-5116-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics