Gawky (GW) is the Drosophila melanogaster GW182 Homologue

  • Jing Li
  • Tom C. Hobman
  • Andrew J. Simmonds
Part of the Advances in Experimental Medicine and Biology book series (volume 768)


While the human GW182 gene was discovered over 10 years ago, functional characterization of the Drosophila melanogaster GW182 othologue—Gawky (Gw, previously denoted as CG31992, CG11484, CG9905, or dGW182) has been relatively recent. (Rehwinkel et al. 2005; Schneider et al. 2006) However, the Drosophila model has contributed greatly to studying the role(s) of the GW182 family proteins in multiple pathways and in particular their role in RNA interference (RNAi). Of the commonly used metazoan models, Drosophila is unique in that there is only one Gw protein encoded by the Drosophila genome and this homologue retains a high level of sequence and/or organizational identity to vertebrate GW182 proteins (Fig. 8.1). Thus, the potential functional redundancy associated with the multiple GW182 family proteins encoded by the mammalian genome is less of a concern in Drosophila studies (Schneider et al. 2006; Eystathioy et al. 2002). The bulk of the currently published literature regarding Drosophila Gw can be divided into two main categories. Functional studies describing the Drosophila gw mutant phenotype and cell-biological/biochemical studies probing the vital role of Gw in the mechanics of Drosophila miRNA pathway.


mRNA Regulation Nonsense Mediate Decay Nuclear Cycle Syncytial Embryo miRNA Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor Miklos GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Ashburner M, Drysdale R (1994) FlyBase—the Drosophila genetic database. Development 120:2077–2079PubMedGoogle Scholar
  3. Ball CA, Cherry JM (2001) Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms. Curr Opin Chem Biol 5:86–89PubMedCrossRefGoogle Scholar
  4. Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M (2006) Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52:997–1009PubMedCrossRefGoogle Scholar
  5. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA ­degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:Dcp2decapping complexes. Genes Dev 20:1885–1898PubMedCrossRefGoogle Scholar
  6. Bjorklund M, Taipale M, Varjosalo M, Saharinen J, Lahdenpera J, Taipale J (2006) Identification of pathways regulating cell size and cell-cycle progression by RNAi. Nature 439:1009–1013PubMedCrossRefGoogle Scholar
  7. Boutros M, Kiger AA, Armknecht S, Kerr K, Hild M, Koch B, Haas SA, Paro R, Perrimon N (2004) Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303:832–835PubMedCrossRefGoogle Scholar
  8. Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH (2009) Unlocking the secrets of the genome. Nature 459:927–930PubMedCrossRefGoogle Scholar
  9. Chekulaeva M, Filipowicz W, Parker R (2009) Multiple independent domains of dGW182 ­function in miRNA-mediated repression in Drosophila. RNA 15:794–803PubMedCrossRefGoogle Scholar
  10. Chekulaeva M, Parker R, Filipowicz W (2010) The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res 38(19):6673–6683PubMedCrossRefGoogle Scholar
  11. Ding L, Spencer A, Morita K, Han M (2005) The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell 19:437–447PubMedCrossRefGoogle Scholar
  12. Drysdale R (2003) The Drosophila melanogaster genome sequencing and annotation projects: a status report. Brief Funct Genomic Proteomic 2:128–134PubMedCrossRefGoogle Scholar
  13. Edgar BA, Lehner CF (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274:1646–1652PubMedCrossRefGoogle Scholar
  14. Edgar BA, O’Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57:177–187PubMedCrossRefGoogle Scholar
  15. Ephrussi A, Dickinson LK, Lehmann R (1991) oskar organizes the germ plasm and directs ­localization of the posterior determinant nanos. Cell 66:37–50PubMedCrossRefGoogle Scholar
  16. Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E (2007a) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27:3970–3981PubMedCrossRefGoogle Scholar
  17. Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E (2007b) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570PubMedCrossRefGoogle Scholar
  18. Eulalio A, Huntzinger E, Izaurralde E (2008) GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 15:346–353PubMedCrossRefGoogle Scholar
  19. Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E (2009a) A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15:1067–1077PubMedCrossRefGoogle Scholar
  20. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009b) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32PubMedCrossRefGoogle Scholar
  21. Eulalio A, Tritschler F, Buttner R, Weichenrieder O, Izaurralde E, Truffault V (2009c) The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 37:2974–2983PubMedCrossRefGoogle Scholar
  22. Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351PubMedCrossRefGoogle Scholar
  23. Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, Fritzler MJ (2003) The GW182 ­protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9:1171–1173PubMedCrossRefGoogle Scholar
  24. Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci 61:31–70PubMedGoogle Scholar
  25. Gelbart WM, Crosby M, Matthews B, Rindone WP, Chillemi J, Russo Twombly S, Emmert D, Ashburner M, Drysdale RA, Whitfield E, Millburn GH, de Grey A, Kaufman T, Matthews K, Gilbert D, Strelets V, Tolstoshev C (1997) FlyBase: a Drosophila database. The FlyBase consortium. Nucleic Acids Res 25:63–66PubMedCrossRefGoogle Scholar
  26. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149PubMedCrossRefGoogle Scholar
  27. Gilbert DG (2007) DroSpeGe: rapid access database for new Drosophila species genomes. Nucleic Acids Res 35:D480–D485PubMedCrossRefGoogle Scholar
  28. Hay B, Ackerman L, Barbel S, Jan LY, Jan YN (1988) Identification of a component of Drosophila polar granules. Development 103:625–640PubMedGoogle Scholar
  29. Huntzinger E, Braun JE, Heimstadt S, Zekri L, Izaurralde E (2010) Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J 29:4146–4160PubMedCrossRefGoogle Scholar
  30. Ikeda K, Satoh M, Pauley KM, Fritzler MJ, Reeves WH, Chan EK (2006) Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody. J Immunol Methods 317:38–44PubMedCrossRefGoogle Scholar
  31. Iwasaki S, Kawamata T, Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34:58–67PubMedCrossRefGoogle Scholar
  32. Jager E, Dorner S (2010) The decapping activator HPat a novel factor co-purifying with GW182 from Drosophila cells. RNA Biol 7:381–385PubMedCrossRefGoogle Scholar
  33. Jin Z, Xie T (2006) Germline specification: small things have a big role. Curr Biol 16:R966–R967PubMedCrossRefGoogle Scholar
  34. Johansson AM, Stenberg P, Bernhardsson C, Larsson J (2007a) Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster. EMBO J 26:2307–2316PubMedCrossRefGoogle Scholar
  35. Johansson AM, Stenberg P, Pettersson F, Larsson J (2007b) POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation. PLoS Genet 3:e209PubMedCrossRefGoogle Scholar
  36. Kim-Ha J, Webster PJ, Smith JL, Macdonald PM (1993) Multiple RNA regulatory elements mediate distinct steps in localization of oskar mRNA. Development 119:169–178PubMedGoogle Scholar
  37. Kobayashi S, Takashima A, Anzai K (1998) The dendritic translocation of translin protein in the form of BC1 RNA protein particles in developing rat hippocampal neurons in primary culture. Biochem Biophys Res Commun 253:448–453PubMedCrossRefGoogle Scholar
  38. Larsson J, Chen JD, Rasheva V, Rasmuson-Lestander A, Pirrotta V (2001) Painting of fourth, a chromosome-specific protein in Drosophila. Proc Natl Acad Sci U S A 98:6273–6278PubMedCrossRefGoogle Scholar
  39. Larsson J, Svensson MJ, Stenberg P, Makitalo M (2004) Painting of fourth in genus Drosophila suggests autosome-specific gene regulation. Proc Natl Acad Sci U S A 101:9728–9733PubMedCrossRefGoogle Scholar
  40. Lawniczak MK, Begun DJ (2004) A genome-wide analysis of courting and mating responses in Drosophila melanogaster females. Genome 47:900–910PubMedCrossRefGoogle Scholar
  41. Lee YS, Pressman S, Andress AP, Kim K, White JL, Cassidy JJ, Li X, Lubell K, Lim do H, Cho IS, Nakahara K, Preall JB, Preall P, Sontheimer EJ, Carthew RW (2009) Silencing by small RNAs is linked to endosomal trafficking. Nat Cell Biol 11:1150–1156PubMedCrossRefGoogle Scholar
  42. Lin MD, Fan SJ, Hsu WS, Chou TB (2006) Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 10:601–613PubMedCrossRefGoogle Scholar
  43. Lin MD, Jiao X, Grima D, Newbury SF, Kiledjian M, Chou TB (2008) Drosophila processing bodies in oogenesis. Dev Biol 322:276–288PubMedCrossRefGoogle Scholar
  44. Locke J, McDermid HE (1993) Analysis of Drosophila chromosome 4 using pulsed field gel electrophoresis. Chromosoma 102:718–723PubMedCrossRefGoogle Scholar
  45. Mahowald AP (2001) Assembly of the Drosophila germ plasm. Int Rev Cytol 203:187–213PubMedCrossRefGoogle Scholar
  46. Mansfield JH, Wilhelm JE, Hazelrigg T (2002) Ypsilon Schachtel, a Drosophila Y-box protein, acts antAgonistically to Orb in the oskar mRNA localization and translation pathway. Development 129:197–209PubMedGoogle Scholar
  47. Mathey-Prevot B, Perrimon N (2006) Drosophila genome-wide RNAi screens: are they delivering the promise? Cold Spring Harb Symp Quant Biol 71:141–148PubMedCrossRefGoogle Scholar
  48. Metzstein MM, Krasnow MA (2006) Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS Genet 2:e180PubMedCrossRefGoogle Scholar
  49. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3:RESEARCH0083Google Scholar
  50. Morgan TH (1910) Sex limited inheritance in Drosophila. Science 32:120–122PubMedCrossRefGoogle Scholar
  51. Muddashetty R, Khanam T, Kondrashov A, Bundman M, Iacoangeli A, Kremerskothen J, Duning K, Barnekow A, Huttenhofer A, Tiedge H, Brosius J (2002) Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J Mol Biol 321:433–445PubMedCrossRefGoogle Scholar
  52. Ohashi S, Kobayashi S, Omori A, Ohara S, Omae A, Muramatsu T, Li Y, Anzai K (2000) The single-stranded DNA- and RNA-binding proteins pur alpha and pur beta link BC1 RNA to microtubules through binding to the dendrite-targeting RNA motifs. J Neurochem 75:1781–1790PubMedCrossRefGoogle Scholar
  53. Perrimon N (1998) Creating mosaics in Drosophila. Int J Dev Biol 42:243–247PubMedGoogle Scholar
  54. Quaresma AJ, Bressan GC, Gava LM, Lanza DC, Ramos CH, Kobarg J (2009) Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments. Exp Cell Res 315:968–980PubMedCrossRefGoogle Scholar
  55. Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005) A crucial role for GW182 and the DCP1:Dcp2decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647PubMedCrossRefGoogle Scholar
  56. Reiter LT, Bier E (2002) Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets 6:387–399PubMedCrossRefGoogle Scholar
  57. Riddle NC, Shaffer CD, Elgin SC (2009) A lot about a little dot—lessons learned from Drosophila melanogaster chromosome 4. Biochem Cell Biol 87:229–241PubMedCrossRefGoogle Scholar
  58. Schneider MD, Najand N, Chaker S, Pare JM, Haskins J, Hughes SC, Hobman TC, Locke J, Simmonds AJ (2006) Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development. J Cell Biol 174:349–358PubMedCrossRefGoogle Scholar
  59. Sousa-Neves R, Lukacsovich T, Mizutani CM, Locke J, Podemski L, Marsh JL (2005) High-resolution mapping of the Drosophila fourth chromosome using site-directed terminal deficiencies. Genetics 170:127–138PubMedCrossRefGoogle Scholar
  60. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176PubMedCrossRefGoogle Scholar
  61. St Johnston D, Beuchle D, Nusslein-Volhard C (1991) staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66:51–63PubMedCrossRefGoogle Scholar
  62. Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE (2002) A Drosophila full-length cDNA resource. Genome Biol 3:RESEARCH0080Google Scholar
  63. Stenberg P, Lundberg LE, Johansson AM, Ryden P, Svensson MJ, Larsson J (2009) Buffering of segmental and chromosomal aneuploidies in Drosophila melanogaster. PLoS Genet 5:e1000465PubMedCrossRefGoogle Scholar
  64. Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042PubMedCrossRefGoogle Scholar
  65. Till S, Lejeune E, Thermann R, Bortfeld M, Hothorn M, Enderle D, Heinrich C, Hentze MW, Ladurner AG (2007) A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat Struct Mol Biol 14:897–903PubMedCrossRefGoogle Scholar
  66. Tritschler F, Huntzinger E, Izaurralde E (2010) Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of deja vu. Nat Rev Mol Cell Biol 11:379–384PubMedGoogle Scholar
  67. Turner FR, Mahowald AP (1977) Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Dev Biol 57:403–416PubMedCrossRefGoogle Scholar
  68. Tzeng TY, Lee CH, Chan LW, Shen CK (2007) Epigenetic regulation of the Drosophila chromosome 4 by the histone H3K9 methyltransferase dSETDB1. Proc Natl Acad Sci U S A 104:12691–12696PubMedCrossRefGoogle Scholar
  69. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  70. Wilkins AS (2001) Gene names: the approaching end of a century-long dilemma. Bioessays 23:377–378PubMedCrossRefGoogle Scholar
  71. Wilsch-Brauninger M, Schwarz H, Nusslein-Volhard C (1997) A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 139:817–829PubMedCrossRefGoogle Scholar
  72. Yao B, Li S, Jung HM, Lian SL, Abadal GX, Han F, Fritzler MJ, Chan EK (2011) Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res 39:2534–2547PubMedCrossRefGoogle Scholar
  73. Zekri L, Huntzinger E, Heimstadt S, Izaurralde E (2009) The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 29:6220–6231PubMedCrossRefGoogle Scholar
  74. Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Cell BiologyUniversity of AlbertaEdmontonCanada

Personalised recommendations