Sleep, Energy Homeostasis and Metabolic Syndrome Alterations



Though occupying up to 30% of our lifetime, the biological process of sleep retains many of its secrets. Most animals need to sleep regularly, but why this is essential for general well-being and life itself remains unknown. One important function of sleep lies in its regulation of metabolic homeostasis. In this chapter we describe the complex interactive relationship of sleep and metabolism and the impact of sleep loss and sleep disruption on the development of the metabolic syndrome. We show that the two processes are regulated by complementary and partially overlapping central circuits and both share a close connection with the circadian clock. In our modern societies sleep hygiene has long been neglected, but it becomes increasingly clear that healthy and sufficient sleep is an essential factor in maintaining a normal body weight and minimizing the risk of developing obesity-associated diseases such as type 2 diabetes and the metabolic syndrome.


Metabolic Syndrome Obstructive Sleep Apnea Sleep Deprivation Circadian Clock Slow Wave Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A.H.T. is supported by an excellence fellowship of the GGNB graduate program of the University of Göttingen. J.H. is supported by the Max Planck Society. H.O. is an Emmy Noether fellow of the German Research Foundation (DFG) and a Lichtenberg fellow of the Volkswagen Foundation.


  1. 1.
    Zimmerman JE, Naidoo N, Raizen DM, Pack AI (2008) Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 31(7):371–376PubMedGoogle Scholar
  2. 2.
    Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204PubMedGoogle Scholar
  3. 3.
    Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 Pt 2):R161–R183PubMedGoogle Scholar
  4. 4.
    Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Rev 49(3):429–454PubMedGoogle Scholar
  5. 5.
    Dijk DJ, Beersma DG, Daan S (1987) EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2(3):207–219PubMedGoogle Scholar
  6. 6.
    Tobler I, Borbely AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64(1):74–76PubMedGoogle Scholar
  7. 7.
    Franken P, Dijk DJ, Tobler I, Borbely AA (1991) Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261(1 Pt 2):R198–R208PubMedGoogle Scholar
  8. 8.
    Neckelmann D, Ursin R (1993) Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep 16(5):467–477PubMedGoogle Scholar
  9. 9.
    Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042PubMedGoogle Scholar
  10. 10.
    Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30(3):257–262PubMedGoogle Scholar
  11. 11.
    Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6(10):1086–1090PubMedGoogle Scholar
  12. 12.
    Landgraf D, Shostak A, Oster H (2011) Clock genes and sleep. Pflugers Arch 463(1):3–14PubMedGoogle Scholar
  13. 13.
    Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268PubMedGoogle Scholar
  14. 14.
    Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R (2010) Sleep and brain energy levels: ATP changes during sleep. J Neurosci 30(26):9007–9016PubMedGoogle Scholar
  15. 15.
    Bollinger T, Bollinger A, Oster H, Solbach W (2010) Sleep, immunity, and circadian clocks: a mechanistic model. Gerontology 56(6):574–580PubMedGoogle Scholar
  16. 16.
    Andretic R, Franken P, Tafti M (2008) Genetics of sleep. Annu Rev Genet 42:361–388PubMedGoogle Scholar
  17. 17.
    Thompson CL, Wisor JP, Lee CK, Pathak SD, Gerashchenko D, Smith KA et al (2010) Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci 4:165PubMedGoogle Scholar
  18. 18.
    Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43PubMedGoogle Scholar
  19. 19.
    Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N, Mackiewicz M et al (2006) Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27(3):337–350PubMedGoogle Scholar
  20. 20.
    Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69(1–2):65–73PubMedGoogle Scholar
  21. 21.
    Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP (2011) Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 589(1):235–244PubMedGoogle Scholar
  22. 22.
    Zhang S, Zeitzer JM, Sakurai T, Nishino S, Mignot E (2007) Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol 581(Pt 2):649–663PubMedGoogle Scholar
  23. 23.
    Rechtschaffen A, Bergmann BM (1995) Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res 69(1–2):55–63PubMedGoogle Scholar
  24. 24.
    Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P et al (1997) Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120(Pt 7):1173–1197PubMedGoogle Scholar
  25. 25.
    Benedict C, Hallschmid M, Lassen A, Mahnke C, Schultes B, Birgir Schioth H et al (2011) Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr 93(6):1229–1236PubMedGoogle Scholar
  26. 26.
    Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126PubMedGoogle Scholar
  27. 27.
    Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265(5172):676–679PubMedGoogle Scholar
  28. 28.
    Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107PubMedGoogle Scholar
  29. 29.
    Rasch B, Buchel C, Gais S, Born J (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315(5817):1426–1429PubMedGoogle Scholar
  30. 30.
    Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332(6037):1576–1581PubMedGoogle Scholar
  31. 31.
    Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P et al (2010) Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 68(1):87–98PubMedGoogle Scholar
  32. 32.
    Gilestro GF, Tononi G, Cirelli C (2009) Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324(5923):109–112PubMedGoogle Scholar
  33. 33.
    Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G (2011) Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 14(11):1418–1420PubMedGoogle Scholar
  34. 34.
    Wang G, Grone B, Colas D, Appelbaum L, Mourrain P (2011) Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci 34(9):452–463PubMedGoogle Scholar
  35. 35.
    Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553PubMedGoogle Scholar
  36. 36.
    Beccuti G, Pannain S (2011) Sleep and obesity. Curr Opin Clin Nutr Metab Care 14(4):402–412PubMedGoogle Scholar
  37. 37.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557–567PubMedGoogle Scholar
  38. 38.
    Kripke DF, Simons RN, Garfinkel L, Hammond EC (1979) Short and long sleep and sleeping pills. Is increased mortality associated? Arch Gen Psychiatry 36(1):103–116PubMedGoogle Scholar
  39. 39.
    National Sleep Foundation. “Sleep in America” poll (2008) Available from
  40. 40.
    National Center for Health Statistics (2005) QuickStats: percentage of adults who reported an average of ≤6 h of sleep per 24-hour period, by sex and age group - United States, 1984 and 2004. MMWR Morb Mortal Wkly Rep. 2005;54:933Google Scholar
  41. 41.
    Knutson KL, Van Cauter E (2008) Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci 1129:287–304PubMedGoogle Scholar
  42. 42.
    Akerstedt T (2003) Shift work and disturbed sleep/wakefulness. Occup Med (Lond) 53(2):89–94Google Scholar
  43. 43.
    Ohayon MM, Lemoine P, Arnaud-Briant V, Dreyfus M (2002) Prevalence and consequences of sleep disorders in a shift worker population. J Psychosom Res 53(1):577–583PubMedGoogle Scholar
  44. 44.
    Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106(11):4453–4458PubMedGoogle Scholar
  45. 45.
    Nussey S, Whitehead S (2001) The endocrine pancreas. In: Endocrinology: an integrated approach. Oxford: BIOS Scientific PublishersGoogle Scholar
  46. 46.
    Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88(3):934–942PubMedGoogle Scholar
  47. 47.
    Kuhn E, Brodan V, Brodanova M, Rysanek K (1969) Metabolic reflection of sleep deprivation. Act Nerv Super (Praha) 11(3):165–174Google Scholar
  48. 48.
    Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188):1435–1439PubMedGoogle Scholar
  49. 49.
    Nedeltcheva AV, Kessler L, Imperial J, Penev PD (2009) Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab 94(9):3242–3250PubMedGoogle Scholar
  50. 50.
    Maquet P (1995) Sleep function(s) and cerebral metabolism. Behav Brain Res 69(1–2):75–83PubMedGoogle Scholar
  51. 51.
    Van Cauter E, Leproult R, Plat L (2000) Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284(7):861–868PubMedGoogle Scholar
  52. 52.
    Resta O, Foschino Barbaro MP, Bonfitto P, Giliberti T, Depalo A, Pannacciulli N et al (2003) Low sleep quality and daytime sleepiness in obese patients without obstructive sleep apnoea syndrome. J Intern Med 253(5):536–543PubMedGoogle Scholar
  53. 53.
    Vgontzas AN, Tan TL, Bixler EO, Martin LF, Shubert D, Kales A (1994) Sleep apnea and sleep disruption in obese patients. Arch Intern Med 154(15):1705–1711PubMedGoogle Scholar
  54. 54.
    Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP (2001) The continuing epidemics of obesity and diabetes in the United States. JAMA 286(10):1195–1200PubMedGoogle Scholar
  55. 55.
    Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008) Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 105(3):1044–1049PubMedGoogle Scholar
  56. 56.
    Bourke SC, Gibson GJ (2002) Sleep and breathing in neuromuscular disease. Eur Respir J 19(6):1194–1201PubMedGoogle Scholar
  57. 57.
    Stamatakis KA, Punjabi NM (2010) Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 137(1):95–101PubMedGoogle Scholar
  58. 58.
    Pallayova M, Donic V, Gresova S, Peregrim I, Tomori Z (2010) Do differences in sleep architecture exist between persons with type 2 diabetes and nondiabetic controls? J Diabetes Sci Technol 4(2):344–352PubMedGoogle Scholar
  59. 59.
    Caples SM, Gami AS, Somers VK (2005) Obstructive sleep apnea. Ann Intern Med 142(3):187–197PubMedGoogle Scholar
  60. 60.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235PubMedGoogle Scholar
  61. 61.
    Tasali E, Mokhlesi B, Van Cauter E (2008) Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 133(2):496–506PubMedGoogle Scholar
  62. 62.
    Corsonello A, Antonelli Incalzi R, Pistelli R, Pedone C, Bustacchini S, Lattanzio F (2011) Comorbidities of chronic obstructive pulmonary disease. Curr Opin Pulm Med 17(Suppl 1):S21–S28PubMedGoogle Scholar
  63. 63.
    Mendoza J, Pevet P, Challet E (2008) High-fat feeding alters the clock synchronization to light. J Physiol 586(Pt 24):5901–5910PubMedGoogle Scholar
  64. 64.
    Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6(5):414–421PubMedGoogle Scholar
  65. 65.
    Benedict C, Hallschmid M, Lassen A, Mahnke C, Schultes B, Schioth HB et al (2011) Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr 93(6):1229–1236PubMedGoogle Scholar
  66. 66.
    Klingenberg L, Sjodin A, Holmback U, Astrup A, Chaput JP (2012) Short sleep duration and its association with energy metabolism. Obes Rev 13(7):565–577PubMedGoogle Scholar
  67. 67.
    Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R et al (2000) Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9(4):335–352PubMedGoogle Scholar
  68. 68.
    Mullington JM, Simpson NS, Meier-Ewert HK, Haack M (2010) Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab 24(5):775–784PubMedGoogle Scholar
  69. 69.
    Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nat Rev Neurosci 10(3):199–210PubMedGoogle Scholar
  70. 70.
    Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117PubMedGoogle Scholar
  71. 71.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116(7):1793–1801PubMedGoogle Scholar
  72. 72.
    Spiegel K, Leproult R, Colecchia EF, L’Hermite-Baleriaux M, Nie Z, Copinschi G et al (2000) Adaptation of the 24-h growth hormone profile to a state of sleep debt. Am J Physiol Regul Integr Comp Physiol 279(3):R874–R883PubMedGoogle Scholar
  73. 73.
    Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E (2005) Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol 99(5):2008–2019PubMedGoogle Scholar
  74. 74.
    Darmon P, Dadoun F, Boullu-Ciocca S, Grino M, Alessi MC, Dutour A (2006) Insulin resistance induced by hydrocortisone is increased in patients with abdominal obesity. Am J Physiol Endocrinol Metab 291(5):E995–E1002PubMedGoogle Scholar
  75. 75.
    Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 121(6):2118–2125PubMedGoogle Scholar
  76. 76.
    Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101PubMedGoogle Scholar
  77. 77.
    Broussard J, Brady MJ (2010) The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract Res Clin Endocrinol Metab 24(5):763–773PubMedGoogle Scholar
  78. 78.
    Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46(1):3–10PubMedGoogle Scholar
  79. 79.
    Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7):2005–2011PubMedGoogle Scholar
  80. 80.
    Cunha DA, Ladriere L, Ortis F, Igoillo-Esteve M, Gurzov EN, Lupi R et al (2009) Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58(12):2851–2862PubMedGoogle Scholar
  81. 81.
    Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50(7):1612–1617PubMedGoogle Scholar
  82. 82.
    Hucking K, Hamilton-Wessler M, Ellmerer M, Bergman RN (2003) Burst-like control of lipolysis by the sympathetic nervous system in vivo. J Clin Invest 111(2):257–264PubMedGoogle Scholar
  83. 83.
    Coppack SW, Jensen MD, Miles JM (1994) In vivo regulation of lipolysis in humans. J Lipid Res 35(2):177–193PubMedGoogle Scholar
  84. 84.
    Macfarlane DP, Forbes S, Walker BR (2008) Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197(2):189–204PubMedGoogle Scholar
  85. 85.
    Baxter JD, Forsham PH (1972) Tissue effects of glucocorticoids. Am J Med 53(5):573–589PubMedGoogle Scholar
  86. 86.
    Roberge C, Carpentier AC, Langlois MF, Baillargeon JP, Ardilouze JL, Maheux P et al (2007) Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity. Am J Physiol Endocrinol Metab 293(6):E1465–E1478PubMedGoogle Scholar
  87. 87.
    Williams BH, Berdanier CD (1982) Effects of diet composition and adrenalectomy on the lipogenic responses of rats to starvation-refeeding. J Nutr 112(3):534–541PubMedGoogle Scholar
  88. 88.
    Strawford A, Antelo F, Christiansen M, Hellerstein MK (2004) Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am J Physiol Endocrinol Metab 286(4):E577–E588PubMedGoogle Scholar
  89. 89.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351PubMedGoogle Scholar
  90. 90.
    Hauner H, Schmid P, Pfeiffer EF (1987) Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 64(4):832–835PubMedGoogle Scholar
  91. 91.
    Halvorsen YD, Bond A, Sen A, Franklin DM, Lea-Currie YR, Sujkowski D et al (2001) Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis. Metabolism 50(4):407–413PubMedGoogle Scholar
  92. 92.
    Tchoukalova YD, Fitch M, Rogers PM, Covington JD, Henagan TM, Ye J et al (2012) In vivo adipogenesis in rats measured by cell kinetics in adipocytes and plastic-adherent stroma-vascular cells in response to high-fat diet and thiazolidinedione. Diabetes 61(1):137–144PubMedGoogle Scholar
  93. 93.
    Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD (2009) Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 89(1):126–133PubMedGoogle Scholar
  94. 94.
    Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29(1):81–90PubMedGoogle Scholar
  95. 95.
    Leibel RL (2002) The role of leptin in the control of body weight. Nutr Rev 60(10 Pt 2):S15–S19, discussion S68–S84, 5–7PubMedGoogle Scholar
  96. 96.
    Friedman JM (2002) The function of leptin in nutrition, weight, and physiology. Nutr Rev 60(10 Pt 2):S1–S14, discussion S68–S84, 5–7PubMedGoogle Scholar
  97. 97.
    Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141(11):846–850PubMedGoogle Scholar
  98. 98.
    Mizuno T, Bergen H, Kleopoulos S, Bauman WA, Mobbs CV (1996) Effects of nutritional status and aging on leptin gene expression in mice: importance of glucose. Horm Metab Res 28(12):679–684PubMedGoogle Scholar
  99. 99.
    Saad MF, Bernaba B, Hwu CM, Jinagouda S, Fahmi S, Kogosov E et al (2002) Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 87(8):3997–4000PubMedGoogle Scholar
  100. 100.
    Magee CA, Melanson EL, Frydendall EJ, Huang XF, Iverson DC, Caputi P (2009) Acute sleep restriction alters neurocrine hormones and appetite in healthy male adults. Sleep Biol Rhythms 7:125–127Google Scholar
  101. 101.
    Benedict C, Shostak A, Lange T, Brooks SJ, Schioth HB, Schultes B et al (2012) Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): impact of sleep loss and relation to glucose metabolism. J Clin Endocrinol Metab 97(2):E218–E222PubMedGoogle Scholar
  102. 102.
    Gottlieb DJ, Redline S, Nieto FJ, Baldwin CM, Newman AB, Resnick HE et al (2006) Association of usual sleep duration with hypertension: the Sleep Heart Health Study. Sleep 29(8):1009–1014PubMedGoogle Scholar
  103. 103.
    Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG et al (2006) Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension 47(5):833–839PubMedGoogle Scholar
  104. 104.
    Kotani K, Saiga K, Sakane N, Mu H, Kurozawa Y (2008) Sleep status and blood pressure in a healthy normotensive female population. Int J Cardiol 125(3):425–427PubMedGoogle Scholar
  105. 105.
    Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V et al (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121(6):2102–2110PubMedGoogle Scholar
  106. 106.
    Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89(11):5762–5771PubMedGoogle Scholar
  107. 107.
    Lavie L (2003) Obstructive sleep apnoea syndrome–an oxidative stress disorder. Sleep Med Rev 7(1):35–51PubMedGoogle Scholar
  108. 108.
    Lee SA, Amis TC, Byth K, Larcos G, Kairaitis K, Robinson TD et al (2008) Heavy snoring as a cause of carotid artery atherosclerosis. Sleep 31(9):1207–1213PubMedGoogle Scholar
  109. 109.
    Sanchez-Lasheras C, Konner AC, Bruning JC (2010) Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front Neuroendocrinol 31(1):4–15PubMedGoogle Scholar
  110. 110.
    Kleinridders A, Konner AC, Bruning JC (2009) CNS-targets in control of energy and glucose homeostasis. Curr Opin Pharmacol 9(6):794–804PubMedGoogle Scholar
  111. 111.
    Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1(8):876–886PubMedGoogle Scholar
  112. 112.
    Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl. suppl 232:1–55Google Scholar
  113. 113.
    Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 103(4):1059–1064PubMedGoogle Scholar
  114. 114.
    Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202PubMedGoogle Scholar
  115. 115.
    Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840(1–2):138–147PubMedGoogle Scholar
  116. 116.
    Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197(2):291–317PubMedGoogle Scholar
  117. 117.
    Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594PubMedGoogle Scholar
  118. 118.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720PubMedGoogle Scholar
  119. 119.
    Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46(5):787–798PubMedGoogle Scholar
  120. 120.
    Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997PubMedGoogle Scholar
  121. 121.
    Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474PubMedGoogle Scholar
  122. 122.
    Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y et al (2010) Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 120(3):713–719PubMedGoogle Scholar
  123. 123.
    Kawashima M, Lin L, Tanaka S, Jennum P, Knudsen S, Nevsimalova S et al (2010) Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep 33(7):869–874PubMedGoogle Scholar
  124. 124.
    Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219PubMedGoogle Scholar
  125. 125.
    Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20(10):3830–3842PubMedGoogle Scholar
  126. 126.
    Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161(1):269–292PubMedGoogle Scholar
  127. 127.
    Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D (2002) Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 543(Pt 2):665–677PubMedGoogle Scholar
  128. 128.
    el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76(3):519–29PubMedGoogle Scholar
  129. 129.
    Sakai K, Jouvet M (1980) Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Res 194(2):500–505PubMedGoogle Scholar
  130. 130.
    Luppi PH, Gervasoni D, Boissard R, Verret L, Goutagny R, Peyron C et al (2004) Brainstem structures responsible for paradoxical sleep onset and maintenance. Arch Ital Biol 142(4):397–411PubMedGoogle Scholar
  131. 131.
    Vetrivelan R, Fuller PM, Tong Q, Lu J (2009) Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci 29(29):9361–9369PubMedGoogle Scholar
  132. 132.
    Bonnavion P, de Lecea L (2010) Hypocretins in the control of sleep and wakefulness. Curr Neurol Neurosci Rep 10(3):174–179PubMedGoogle Scholar
  133. 133.
    Fu LY, Acuna-Goycolea C, van den Pol AN (2004) Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci 24(40):8741–8751PubMedGoogle Scholar
  134. 134.
    Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN (2005) Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 25(32):7406–7419PubMedGoogle Scholar
  135. 135.
    Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38(5):701–713PubMedGoogle Scholar
  136. 136.
    Jordan SD, Konner AC, Bruning JC (2010) Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 67(19):3255–3273PubMedGoogle Scholar
  137. 137.
    Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ et al (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380(6571):243–247PubMedGoogle Scholar
  138. 138.
    Rossi M, Choi SJ, O’Shea D, Miyoshi T, Ghatei MA, Bloom SR (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology 138(1):351–355PubMedGoogle Scholar
  139. 139.
    Bayer L, Eggermann E, Serafin M, Grivel J, Machard D, Muhlethaler M et al (2005) Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices. Neuroscience 130(4):807–811PubMedGoogle Scholar
  140. 140.
    Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25(9):2429–2433PubMedGoogle Scholar
  141. 141.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell;92(5):1 page following 696Google Scholar
  142. 142.
    Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T et al (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19(6):1524–1534PubMedGoogle Scholar
  143. 143.
    Martins PJ, Marques MS, Tufik S, D’Almeida V (2010) Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation. Am J Physiol Endocrinol Metab 298(3):E726–E734PubMedGoogle Scholar
  144. 144.
    Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J et al (2001) Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 107(3):379–386PubMedGoogle Scholar
  145. 145.
    Della-Zuana O, Presse F, Ortola C, Duhault J, Nahon JL, Levens N (2002) Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague–Dawley rats. Int J Obes Relat Metab Disord 26(10):1289–1295PubMedGoogle Scholar
  146. 146.
    Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396(6712):670–674PubMedGoogle Scholar
  147. 147.
    Bjursell M, Gerdin AK, Ploj K, Svensson D, Svensson L, Oscarsson J et al (2006) Melanin-concentrating hormone receptor 1 deficiency increases insulin sensitivity in obese leptin-deficient mice without affecting body weight. Diabetes 55(3):725–733PubMedGoogle Scholar
  148. 148.
    Hasler BP, Smith LJ, Cousins JC, Bootzin RR (2012) Circadian rhythms, sleep, and substance abuse. Sleep Med Rev 16(1):67–81PubMedGoogle Scholar
  149. 149.
    Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74(2):246–260PubMedGoogle Scholar
  150. 150.
    Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23(1):7–11PubMedGoogle Scholar
  151. 151.
    Narita M, Nagumo Y, Miyatake M, Ikegami D, Kurahashi K, Suzuki T (2007) Implication of protein kinase C in the orexin-induced elevation of extracellular dopamine levels and its rewarding effect. Eur J Neurosci 25(5):1537–1545PubMedGoogle Scholar
  152. 152.
    Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776PubMedGoogle Scholar
  153. 153.
    Gray TS, Morley JE (1986) Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 38(5):389–401PubMedGoogle Scholar
  154. 154.
    Muschamp JW, Dominguez JM, Sato SM, Shen RY, Hull EM (2007) A role for hypocretin (orexin) in male sexual behavior. J Neurosci 27(11):2837–2845PubMedGoogle Scholar
  155. 155.
    Naleid AM, Grace MK, Cummings DE, Levine AS (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26(11):2274–2279PubMedGoogle Scholar
  156. 156.
    Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB et al (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810PubMedGoogle Scholar
  157. 157.
    Gujar N, Yoo SS, Hu P, Walker MP (2011) Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci 31(12):4466–4474PubMedGoogle Scholar
  158. 158.
    Kevitiyagala D, Finlay F, Baverstock A (2011) Question 1. What is the impact of computer games on sleep in children? Arch Dis Child 96(9):894–895PubMedGoogle Scholar
  159. 159.
    Parhami I, Siani A, Rosenthal RJ, Fong TW (2012) Pathological gambling, problem gambling and sleep complaints: an analysis of the national comorbidity survey: replication (NCS-R). J Gambl Stud [Epub ahead of print]Google Scholar
  160. 160.
    Parhami I, Siani A, Rosenthal RJ, Lin S, Collard M, Fong TW (2012) Sleep and gambling severity in a community sample of gamblers. J Addict Dis 31(1):67–79PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Circadian Rhythms GroupMax Planck Institute for Biophysical ChemistryGöttingenGermany
  2. 2.Medical Department IUniversity of LübeckLübeckGermany

Personalised recommendations