Nonideal Considerations for Semi-decentralized Optimal Team Cooperation

  • Elham Semsar-Kazerooni
  • Khashayar Khorasani
Chapter

Abstract

In practice, many impediments may prevent the team members to cooperate effectively and efficiently. To address this issue, in this chapter, two nonideal considerations are investigated for the team cooperation problem. Specifically, we will generalize the results that are obtained in the previous chapter to more challenging environments and considerations. We have considered two scenarios. First, the performance of the previously designed team in the presence of actuator faults is investigated. In the second part of this chapter, the control design is modified to address stability and consensus seeking in a switching network topology.

References

  1. 1.
    M. Ait-Rami and X. Y. Zhou, Linear Matrix Inequalities, Riccati equations, and indefinite stochastic linear quadratic controls, IEEE Trans. Autom. Control 45 (2000), no. 6, 1131–1142.MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Alighanbari and J.P. How, Decentralized task assignment for unmanned aerial vehicles, Proc. Conference on Decision and Control and European Control Conference, December 12–15, 2005, pp. 5668–5673.Google Scholar
  3. 3.
    B. D. O. Anderson and J. B. Moore, Optimal control: Linear quadratic methods, Prentice Hall Information and System Sciences Series, 1990.Google Scholar
  4. 4.
    B. Andrea-Novel, G. Bastin, and G. Campion, Modeling and control of non holonomic wheeled mobile robots, Proc. international conference on robotics and automation, 1991, pp. 1130–1135.Google Scholar
  5. 5.
    D. Angeli and P.A. Bliman, Tight estimates for non-stationary consensus with fixed underlying spanning tree, Proc. IFAC world congress, 2008, pp. 9021–9026.Google Scholar
  6. 6.
    M. Arcak, Passivity as a design tool for group coordination, Proc. American Control Conference, June 14–16, 2006, pp. 29–34.Google Scholar
  7. 7.
    B. D. O. Anderson and J. B. Moore, Passivity as a design tool for group coordination, IEEE Trans. Autom. Control 52 (2007), no. 8, 1380–1390.CrossRefGoogle Scholar
  8. 8.
    T. Baleh and R.C. Arkin, Behavior-based formation control for multi-robot teams, IEEE J. Robot. Autom. 14 (1998), 926–939.CrossRefGoogle Scholar
  9. 9.
    T. Basar and G.J. Olsder, Dynamic noncooperative game theory, Academic Press Inc., 1982.Google Scholar
  10. 10.
    D. Bauso, L. Giarre, and R. Pesenti, Mechanism design for optimal consensus problems, Proc. Conference on Decision and Control, December 13–15, 2006, pp. 3381–3386.Google Scholar
  11. 11.
    B. D. O. Anderson and J. B. Moore, Robust control in uncertain multi-inventory systems and consensus problems, Proc. IFAC world congress, 2008, pp. 9027–9032.Google Scholar
  12. 12.
    R. W. Beard, J. Lawton, and F. Y. Hadaegh, A feedback architecture for formation control, Proc. American Control Conference, vol. 6, June 28–30, 2000, pp. 4087–4091.Google Scholar
  13. 13.
    R. W. Beard, A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol. 9 (2001), no. 6, 777–789.CrossRefGoogle Scholar
  14. 14.
    P. Benner and H. Mena, BDF methods for large-scale differential equations, Proc. 16th international symposium on mathematical theory of network and systems (MTNS), July 5–9, 2004.Google Scholar
  15. 15.
    J. D. Bošković, S. E. Bergstrom, and R. K. Mehra, Retrofit reconfigurable flight control in the presence of control effector damage, Proc. American Control Conference, June 8–10, 2005, pp. 2652–2657.Google Scholar
  16. 16.
    J. D. Bošković, S. M. Li, and R. K. Mehra, Formation flight control design in the presence of unknown leader commands, Proc. American Control Conference, May 8–10, 2002, pp. 2854–2859.Google Scholar
  17. 17.
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix inequalities in system and control theory, SIAM, 1994.Google Scholar
  18. 18.
    W. L. Brogan, Modern control theory, Prentice Hall, 1991.Google Scholar
  19. 19.
    F. Bullo, J. Cortés, and S. Martinez, Distributed control of robotic networks, series in applied mathematics ed., Princeton, 2009.Google Scholar
  20. 20.
    G. Campion, G. Bastin, and B. D Andrea-Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Autom. 12 (1996), no. 1, 47–62.Google Scholar
  21. 21.
    M. Cao, D.A. Spielman, and A.S. Morse, A lower bound on convergence of a distributed network consensus algorithm, Proc. Conference on Decision and Control, 2005, pp. 2356–2361.Google Scholar
  22. 22.
    S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Alg. Disc. Meth. 3 (1982), no. 3, 319–329.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    J. Cortes, S. Martinez, and F. Bullo, Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions, IEEE Trans. Autom. Control 52 (2003), 166–180.Google Scholar
  24. 24.
    G. A. Decastro and F. Paganini, Convex synthesis of controllers for consensus, Proc. American Control Conference, June 30–July 2, 2004, pp. 4933–4938.Google Scholar
  25. 25.
    J. C. Delvenne, R. Carli, and S. Zampieri, Optimal strategies in the average consensus problem, Proc. Conference on Decision and Control-European Control Conference (CDC-ECC), 12–14, 2007, pp. 2498–2503.Google Scholar
  26. 26.
    J. C. Engwerda, LQ dynamic optimization and differential games, John Wiley & Sons, 2005.Google Scholar
  27. 27.
    F. Fagnani and S. Zampieri, Asymmetric randomized gossip algorithms for consensus, Proc. IFAC world congress, 2008, pp. 9051–9056.Google Scholar
  28. 28.
    L. Fang, P. J. Antsaklis, and A. Tzimas, Asynchronous consensus protocols: Preliminary results, simulations, and open questions, Proc. Conference on Decision and Control-European Control Conference (CDC-ECC), 12–15, 2005, pp. 2194–2199.Google Scholar
  29. 29.
    J. A. Fax, Optimal and cooperative control of vehicle formations, Ph.D. thesis, California Institute of Technology, 2002.Google Scholar
  30. 30.
    J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control 49 (2004), no. 9, 1465–1476.MathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Fierro and A. K. Das, A modular architecture for formation control, Proc. IEEE workshop on robot motion and control, November 9–11, 2002, pp. 285–290.Google Scholar
  32. 32.
    V. Gazi, Stability analysis of swarms, Ph.D. thesis, The Ohio State University, 2002.Google Scholar
  33. 33.
    J. A. Fax and R. M. Murray, Stability of an asynchronous swarm with time-dependent communication links, IEEE Trans. Syst., Man, Cybern. B 38 (2008), no. 1, 267–274.Google Scholar
  34. 34.
    C. Godsil and G. Royle, Algebraic graph theory, Springer, 2001.Google Scholar
  35. 35.
    V. Gupta, B. Hassibi, and R. M. Murray, On the synthesis of control laws for a network of autonomous agents, Proc. American Control Conference, vol. 6, June 30–July 2, 2004, pp. 4927–4932.Google Scholar
  36. 36.
    F. Y. Hadaegh, A.R. Ghavimi, G. Singh, and M. Quadrelli, A centralized optimal controller for formation flying spacecraft, Proc. Int. conf. intel. tech., 2000.Google Scholar
  37. 37.
    F. Y. Hadaegh, D.P. Scharf, and S.R. Ploen, Initialization of distributed spacecraft for precision formation flying, Proc. Conference on Control Applications, vol. 2, June 23–25, 2003, pp. 1463–1468.Google Scholar
  38. 38.
    S. Hirche and S. Hara, Stabilizing interconnection characterization for multi-agent systems with dissipative properties, Proc. IFAC world congress, 2008, pp. 1571–1577.Google Scholar
  39. 39.
    Y. C. Ho and K. C. Chu, Team decision theory and information structures in optimal control problems-part I, IEEE Trans. Autom. Control 17 (1972), no. 1, 15–22.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Y. C. Ho and K. C. Chu, Team decision theory and information structures in optimal control problems-part II, IEEE Trans. Autom. Control 17 (1972), no. 1, 22–28.CrossRefGoogle Scholar
  41. 41.
    R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1990.Google Scholar
  42. 42.
    Q. Hui and W. M. Haddad, H 2 optimal semistable stabilization for linear discrete-time dynamical systems with applications to network consensus, Proc. Conference on Decision and Control (CDC), 12–14, 2007, pp. 2315–2320.Google Scholar
  43. 43.
    I.I. Hussein and A.M. Bloch, Dynamic coverage optimal control for interferometric imaging spacecraft formations (part ii): the nonlinear case, Proc. American Control Conference, June 8–10, 2005, pp. 2391–2396.Google Scholar
  44. 44.
    G. İnalhan, D. M. Stipanović, and C. J. Tomlin, Decentralized optimization, with application to multiple aircraft coordination, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 1147–1155.Google Scholar
  45. 45.
    A. Jadbabaie, Robust, non-fragile controller synthesis using model-based fuzzy systems: A linear matrix inequality approach, Master’s thesis, The University of New Mexico, 1997.Google Scholar
  46. 46.
    A. Jadbabaie, J. Lin, and S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control 48 (2003), no. 6, 988–1000.MathSciNetCrossRefGoogle Scholar
  47. 47.
    S. Jinyan, W. Long, and Y. Junzhi, Cooperative control of multiple robotic fish in a disk-pushing task, Proc. American Control Conference, June 14–16, 2006, pp. 2730–2735.Google Scholar
  48. 48.
    H. K. Khalil, Nonlinear systems, Prentice Hall, 1996.Google Scholar
  49. 49.
    D. B. Kingston and R. W. Beard, Discrete-time average-consensus under switching network topologies, Proc. American Control Conference, June 14–16, 2006, pp. 3551–3556.Google Scholar
  50. 50.
    T. J. Koo and S. M. Shahruz, Formation of a group of unmanned aerial vehicles (UAVs), Proc. American Control Conference, June 25–27, 2001, pp. 69–74.Google Scholar
  51. 51.
    J. Lawton, R. W. Beard, and F. Y. Hadaegh, An adaptive control approach to satellite formation flying with relative distance constraints, Proc. American Control Conference, vol. 3, June 2–4, 1999, pp. 1545–1549.Google Scholar
  52. 52.
    D. Lee and M. W. spong, Agreement with non-uniform information delays, Proc. American Control Conference, June 14–16, 2006, pp. 756–761.Google Scholar
  53. 53.
    T. J. Koo and S. M. Shahruz, Stable flocking of multiple inertial agents on balanced graphs, Proc. American Control Conference, June 14–16, 2006, pp. 2136–2141.Google Scholar
  54. 54.
    T. J. Koo and S. M. Shahruz, Stable flocking of inertial agents on balanced communication graphs, IEEE Trans. Autom. Control 52 (2007), no. 8, 1469–1475.CrossRefGoogle Scholar
  55. 55.
    N.E. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, Proc. Conference on Decision and Control, June 30–July 2, 2001, pp. 2968–2973.Google Scholar
  56. 56.
    T. Li, Asymptotically unbiased average consensus under measurement noises and fixed topologies, Proc. IFAC world congress, 2008, pp. 2867–2873.Google Scholar
  57. 57.
    B. Liu, G. Xie, T. Chu, and L. Wang, Controllability of interconnected systems via switching networks with a leader, Proc. IEEE Conference on Systems, Man, and Cybernetics, October 8–11, 2006, pp. 3912–2849.CrossRefGoogle Scholar
  58. 58.
    A. Locatelli, Optimal control: An introduction, Birkhauser, 2001.Google Scholar
  59. 59.
    H. Lutkepohl, Handbook of matrices, Wiley publication, 1996.Google Scholar
  60. 60.
    C.Q. Ma, T. Li, and J.F. Zhang, Leader-following consensus control for multi-agent systems under measurement noises, Proc. IFAC world congress, 2008, pp. 1528–1533.Google Scholar
  61. 61.
    J. Marschak, Elements of a theory of teams, Management Science 1 (1955), 127–137.MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    J. Marschak and R. Radner, Economic theory of teams, Yale University Press, 1972.Google Scholar
  63. 63.
    M. Mesbahi and F. Y. Hadaegh, Reconfigurable control for the formation flying of multiple spacecraft, Proc. International Multi-Conference on Circuits, Systems, and Control, 1999.Google Scholar
  64. 64.
    C.Q. Ma, Formation flying of multiple spacecraft via graphs, matrix inequalities, and switching, AIAA Journal of Guidance, Control, and Dynamics 24 (2001), no. 2, 369–377.CrossRefGoogle Scholar
  65. 65.
    L. Moreau, Stability of continuous time distributed consensus algorithms, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 3998–4003.Google Scholar
  66. 66.
    C.Q. Ma, Stability of multiagent systems with time-dependent communication links, IEEE Trans. Autom. Control 50 (2005), no. 2, 169–182.CrossRefGoogle Scholar
  67. 67.
    N. Moshtagh, A. Jadbabaie, and K. Daniilidis, Distributed geodesic control laws for flocking of nonholonomic agents, Proc. Conference on Decision and Control, December 12–15, 2005, pp. 2835–2840.Google Scholar
  68. 68.
    U. Münz, A. Papachristodoulou, and F. Allgöwer, Nonlinear multi-agent system consensus with time-varying delays, Proc. IFAC world congress, 2008, pp. 1522–1527.Google Scholar
  69. 69.
    E. Nett and S. Schemmer, Reliable real-time communication in cooperative mobile applications, IEEE Trans. Comput. 52 (2003), 166–180.CrossRefGoogle Scholar
  70. 70.
    R. Olfati-Saber, Ultrafast consensus in small-world networks, Proc. American Control Conference, June 8–10, 2005, pp. 2371–2378.Google Scholar
  71. 71.
    C.Q. Ma, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control 51 (2006), no. 3, 401–420.CrossRefGoogle Scholar
  72. 72.
    R. Olfati-Saber, J. A. Fax, and R. M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. of the IEEE 95 (2007), no. 1, 215–233.CrossRefGoogle Scholar
  73. 73.
    R. Olfati-Saber and R. M. Murray, Distributed cooperative control of multiple vehicle formations using structural potential functions, Proc. IFAC World Congress, 2002.Google Scholar
  74. 74.
    C.Q. Ma, Distributed structural stabilization and tracking for formations of dynamic multi-agents, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 209–215.Google Scholar
  75. 75.
    C.Q. Ma, Graph rigidity and distributed formation stabilization of multi-vehicle systems, Proc. Conference on Decision and Control, December 10–13, 2002, pp. 2965–2971.Google Scholar
  76. 76.
    C.Q. Ma, Agreement problems in networks with directed graphs and switching topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 4126–4132.Google Scholar
  77. 77.
    C.Q. Ma, Consensus protocols for networks of dynamic agents, Proc. American Control Conference, June 4–6, 2003, pp. 951–956.Google Scholar
  78. 78.
    C.Q. Ma, Flocking with obstacle avoidance: cooperation with limited communication in mobile networks, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2022–2028.Google Scholar
  79. 79.
    C.Q. Ma, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control 49 (2004), no. 9, 1520–1533.CrossRefGoogle Scholar
  80. 80.
    D. Paley, N. E. Leonard, and R. Sepulchre, Collective motion: Bistability and trajectory tracking, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 1932–1937.Google Scholar
  81. 81.
    R. Radner, Team decision problems, Annals of Mathematical Statistics 33 (1962), no. 3, 857–881.MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Distributed optimization for cooperative agents: application to formation flight, Proc. Conference on Decision and Control, December 14–17, 2004, pp. 2453–2459.Google Scholar
  83. 83.
    A. Rahmani and M. Mesbahi, On the controlled agreement problem, Proc. American Control Conference, June 14–16, 2006, pp. 1376–1381.Google Scholar
  84. 84.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, A graph-theoretic outlook on the controllability of the agreement dynamics, Proc. European Control Conference, July 2–5, 2007.Google Scholar
  85. 85.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Pulling the strings on agreement: Anchoring, controllability, and graph automorphisms, Proc. American Control Conference, July 9–13, 2007, pp. 2738–2743.Google Scholar
  86. 86.
    W. Ren, Distributed attitude consensus among multiple networked spacecraft, Proc. American Control Conference, 2006, pp. 1760–1765.Google Scholar
  87. 87.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Consensus strategies for cooperative control of vehicle formations, IET Control Theory Applications 1 (2007), no. 2, 505–512.CrossRefGoogle Scholar
  88. 88.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, On consensus algorithms for double-integrator dynamics, Proc. Conference on Decision and Control, December 12–14, 2007, pp. 2295–2300.Google Scholar
  89. 89.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Second-order consensus algorithm with extensions to switching topologies and reference models, Proc. American Control Conference, July 11–13, 2007, pp. 1431–1436.Google Scholar
  90. 90.
    W. Ren and R. W. Beard, Consensus of information under dynamically changing interaction topologies, Proc. American Control Conference, June 30–July 2, 2004, pp. 4939–4944.Google Scholar
  91. 91.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Decentralized scheme for spacecraft formation flying via the virtual structure approach, Journal of guidance, control and dynamics 127 (2004), no. 1, 73–82.Google Scholar
  92. 92.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Formation feedback control for multiple spacecraft via virtual structures, IEE proc. control theory appl. 151 (2004), no. 3, 357–368.CrossRefGoogle Scholar
  93. 93.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Trans. Autom. Control 50 (2005), no. 5, 655–661.CrossRefGoogle Scholar
  94. 94.
    R. L. Raffard, C. J. Tomlin, and S. P. Boyd, Distributed consensus in multi-vehicle cooperative control, communications and control engineering series ed., Springer-Verlag, London, 2008.Google Scholar
  95. 95.
    W. Ren, R. W. Beard, and E. M. Atkins, A survey of consensus problems in multi-agent coordination, Proc. American Control Conference, June 8–10, 2005, pp. 1859–1864.Google Scholar
  96. 96.
    W. Ren and Yongcan Cao, Distributed coordination of multi-agent networks, communications and control engineering series ed., Springer-Verlag, London, 2011.Google Scholar
  97. 97.
    C. W. Reynolds, flocks, herds, and schools: a distributed behavioral model, Proc. Computer Graphics (ACM SIGGRAPH), 1987, pp. 25–34.Google Scholar
  98. 98.
    S. Samar, S. Boyd, and D. Gorinevsky, Distributed estimation via dual decomposition, Proc. European Control Conference, 2007, pp. 1511–1519.Google Scholar
  99. 99.
    D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, A survey of spacecraft formation flying guidance and control part II: control, Proc. American Control Conference, June 30–July 2, 2004, pp. 2976–2985.Google Scholar
  100. 100.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, A direct solution for fuel-optimal reactive collision avoidance of collaborating spacecraft, Proc. American Control Conference, vol. 2, June 14–16, 2006, pp. 5201–5206.Google Scholar
  101. 101.
    E. Semsar and K. Khorasani, Adaptive formation control of UAVs in the presence of unknown vortex forces and leader commands, Proc. American Control Conference, June 14–16, 2006, pp. 3563–3568.Google Scholar
  102. 102.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal control and game theoretic approaches to cooperative control of a team of multi-vehicle unmanned systems, Proc. IEEE International Conference on Networking, Sensing and Control, April 15–17, 2007, pp. 628–633.Google Scholar
  103. 103.
    E. Semsar-Kazerooni and K. Khorasani, Optimal cooperation in a modified leader-follower team of agents with partial availability of leader command, Proc. IEEE International Conference on Systems, Man, and Cybernetics, October 7–10, 2007, pp. 234–239.CrossRefGoogle Scholar
  104. 104.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal performance of a modified leader-follower team of agents with partial availability of leader command and presence of team faults, Proc. IEEE Conference on Decision and Control, December12–14, 2007, pp. 2491–2497.Google Scholar
  105. 105.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Semi-decentralized optimal control of a cooperative team of agents, Proc. IEEE International Conference on System of Systems Engineering, April 17–19, 2007, pp. 1–7.Google Scholar
  106. 106.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Semi-decentralized optimal control technique for a leader-follower team of unmanned systems with partial availability of the leader command, Proc. IEEE International Conference on Control and Automation, May 30–June 1, 2007, pp. 475–480.Google Scholar
  107. 107.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Optimal consensus algorithms for cooperative team of agents subject to partial information, Automatica 44 (2008), no. 11, 2766–2777.MathSciNetCrossRefGoogle Scholar
  108. 108.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Switching control of a modified leader-follower team of agents under the leader and network topological changes, Proc. IFAC world congress, vol. 17, 2008, pp. 1534–1540.Google Scholar
  109. 109.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Analysis of actuator faults in a cooperative team consensus of unmanned systems, Proc. American Control Conference, June 10–12, 2009, pp. 2618–2623.Google Scholar
  110. 110.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, A game theory approach to multi-agent team cooperation, Proc. American Control Conference, June 10–12, 2009, pp. 4512–4518.Google Scholar
  111. 111.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, An LMI approach to optimal consensus seeking in multi-agent systems, Proc. American Control Conference, June 10–12, 2009, pp. 4519–4524.Google Scholar
  112. 112.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Multi-agent team cooperation: A game theory approach, Automatica 45 (2009), no. 10, 2205–2213.MathSciNetCrossRefGoogle Scholar
  113. 113.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, An optimal cooperation in a team of agents subject to partial information, International Journal of Control 82 (2009), no. 3, 571–583.MathSciNetCrossRefGoogle Scholar
  114. 114.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, On optimal consensus seeking: An LMI approach, IEEE Trans. Systems, Man, Cybernetics: part B 40 (2010), no. 2, 540–547.CrossRefGoogle Scholar
  115. 115.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Trans. Control System Technology 18 (2010), no. 5, 1155–1161.CrossRefGoogle Scholar
  116. 116.
    D.P. Scharf, A.B. Acikmese, S.R. Ploen, and F. Y. Hadaegh, Switching control of a modified leader-follower team of agents under the leader and network topological changes, IET Control Theory and Applications 5 (2011), no. 12, 1369–1377.MathSciNetCrossRefGoogle Scholar
  117. 117.
    H. Shi, L. Wang, and T. Chu, Coordinated control of multiple interactive dynamical agents with asymmetric coupling pattern and switching topology, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9–15, 2006, pp. 3209–3214.CrossRefGoogle Scholar
  118. 118.
    S. N. Singh and M. Pachter, Adaptive feedback linearizing nonlinear close formation control of UAVs, Proc. American Control Conference, June 28–30, 2000, pp. 854–858.Google Scholar
  119. 119.
    B. Sinopoli, C. Sharp, L. Schenato, S. Schafferthim, and S. Sastry, Distributed control applications within sensor networks, Proc. IEEE 91 (2003), no. 8, 1235–1246.CrossRefGoogle Scholar
  120. 120.
    R. S. Smith and F. Y. Hadaegh, Control strategies for deep space formation flying spacecraft, Proc. American Control Conference, May 8–10, 2002, pp. 2836–2841.Google Scholar
  121. 121.
    R. S. Smith and F. Y. Hadaegh, Parallel estimators and communication in spacecraft formations, Proc. IFAC World Congress, 2005.Google Scholar
  122. 122.
    R. S. Smith and F. Y. Hadaegh, A distributed parallel estimation architecture for cooperative vehicle formation control, Proc. American Control Conference, June 14–16, 2006, pp. 4219–4224.Google Scholar
  123. 123.
    R. S. Smith and F. Y. Hadaegh, Distributed parallel estimation architecture for cooperative vehicle formation control, Proc. IFAC World Congress, July 14–16, 2006.Google Scholar
  124. 124.
    R. S. Smith and F. Y. Hadaegh, Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication, IEEE Trans. Autom. Control 52 (2007), no. 8, 1404–1414.MathSciNetCrossRefGoogle Scholar
  125. 125.
    R. S. Smith and F. Y. Hadaegh, Distributed estimation, communication and control for deep space formations, IET Control Theory Applications 1 (2007), no. 2, 445–451.CrossRefGoogle Scholar
  126. 126.
    J. L. Speyer, I. Seok, and A. Michelin, Decentralized control based on the value of information in large vehicle arrays, Proc. American Control Conference, June 11–13, 2008, pp. 5047–5054.CrossRefGoogle Scholar
  127. 127.
    J. L. Speyer, N. Zika, and E. Franco, Determination of the value of information in large vehicle arrays, Proc. American Control Conference, June 14–16, 2006, pp. 1–7.Google Scholar
  128. 128.
    D. M. Stipanović, G. İnalhan, R. Teo, and C. J. Tomlin, Decentralized overlapping control of a formation of unmanned aerial vehicles, Automatica 40 (2004), 1285–1296.MATHCrossRefGoogle Scholar
  129. 129.
    Y. G. Sun, L. Wang, and G. Xie, Average consensus in directed networks of dynamic agents with time-varying communication delays, Proc. Conference on Decision and Control, December 13–15, 2006, pp. 3393–3398.Google Scholar
  130. 130.
    H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable flocking of mobile agents part I: fixed topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2010–2015.Google Scholar
  131. 131.
    H. G. Tanner, Stable flocking of mobile agents part II: Dynamic topology, Proc. Conference on Decision and Control, December 9–12, 2003, pp. 2016–2021.Google Scholar
  132. 132.
    H. G. Tanner, Flocking in fixed and switching networks, IEEE Trans. Autom. Control 52 (2007), no. 5, 863–868.MathSciNetCrossRefGoogle Scholar
  133. 133.
    H. G. Tanner, V. Kumar, and G. J. Pappas, The effect of feedback and feedforward on formation ISS, Proc. IEEE International Conference on Robotics and Automation, 2002, pp. 3448–3453.Google Scholar
  134. 134.
    H. G. Tanner, G. J. Pappas, and V. Kumar, Leader-to-formation stability, IEEE J. Robot. Autom. 20 (2004), no. 3, 443–455.CrossRefGoogle Scholar
  135. 135.
    J. N. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D. thesis, Massachusetts Institute of Technology, 1984.Google Scholar
  136. 136.
    J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed asynchronous deterministic and stochastic gradient optimization algorithms, IEEE Trans. Autom. Control 31 (1986), no. 9, 803–812.MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    J.Z. Wang, I. Mareels, and Y. Tan, Robustness of distributed multi-agent consensus, Proc. IFAC world congress, 2008, pp. 1510–1515.Google Scholar
  138. 138.
    L. Wang and F. Xiao, A new approach to consensus problems for discrete-time multiagent systems with time-delays, Proc. American Control Conference, June 14–16, 2006, pp. 2118–2123.Google Scholar
  139. 139.
    P.K.C. Wang, Navigation strategies for multiple autonomous mobile robots moving in formation, IEEE J. Robot. Autom. 8 (1991), 177–195.MATHGoogle Scholar
  140. 140.
    C. W. Wu, Agreement and consensus problems in groups of autonomous agents with linear dynamics, Proc. IEEE International Symposium on Circuits and Systems (ISCAS), May 23–26, 2005, pp. 292–295.Google Scholar
  141. 141.
    F. Xiao and L. Wang, Consensus problems for high-dimensional multi-agent systems, IET Control Theory Applications 1 (2007), no. 3, 830–837.CrossRefGoogle Scholar
  142. 142.
    L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems and control letters 53 (2004), no. 1, 65–78.MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    G. Xie and L. Wang, Consensus control for a class of networks of dynamic agents: Switching topology, Proc. American Control Conference, June 14–16, 2006, pp. 1382–1387.Google Scholar
  144. 144.
    H. Yamaguchi, Adaptive formation control for distributed autonomous mobile robot groups, Proc. International Conference on Robotics and Automation, April 20–25, 1997, pp. 2300–2305.Google Scholar
  145. 145.
    T. Yoshikawa, Decomposition of dynamic team decision problems, IEEE Trans. Autom. Control (1978), 627–632.Google Scholar
  146. 146.
    S. Zampieri, Trends in networked control systems, Proc. IFAC world congress, 2008, pp. 2886–2894.Google Scholar
  147. 147.
    G. Zimmermann, A minimax-condition for the characteristic center of a tree, Linear and Multilinear Algebra 45 (1998), 161–187.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elham Semsar-Kazerooni
    • 1
  • Khashayar Khorasani
    • 2
  1. 1.University of TorontoTorontoCanada
  2. 2.Department Electrical & Computer EngineeringConcordia UniversityMontrealCanada

Personalised recommendations