Advertisement

Towards the Systematic Discovery of Immunomodulatory Adjuvants

  • Darren R. FlowerEmail author
Chapter
Part of the Immunomics Reviews: book series (IMMUN, volume 5)

Abstract

Adjuvants potentiate immune responses, reducing the amount and dosage of antigen needed for protective immunity. Adjuvants are particularly important when considering subunit, epitope-based, or other more exotic vaccine formulations that lack significant inherent immunogenicity. While innumerable adjuvants are known, only a handful are licensed for human use: principally alum, and squalene-based oil-in-water adjuvants. Alum, the most commonly used, is suboptimal. There are many varieties of adjuvant: proteins, oligonucleotides, drug-like small-molecules, and liposome-based delivery systems with adjuvant activity being perhaps the most prominent. Like poisons, adjuvants function via several mechanisms. Many plausible alternatives have been proposed. Focussing in particular on the discovery of small-molecule adjuvants, in the following we give a brief and fairly synoptic overview of adjuvants and their discovery.

Keywords

Visceral Leishmaniasis Virtual Screening NLRP3 Inflammasome Inflammasome Activation Adjuvant Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I should like to thank all my colleagues who have influenced me positively or negatively through my career, and have thus been instrumental in forming the opinions expressed above. In particular, Dr. David Tough, Dr. Jagedesch Bayry, Professor Peter Beverley, and Dr. Elma Tchillian.

References

  1. 1.
    Glenny AT, Pope CG, Waddington H, Wallace U (1926) The antigenic value of toxoid precipitated by potassium alum. J Pathol Bacteriol 29:38–45Google Scholar
  2. 2.
    Volk VK, Bunney WE (1942) Reimmunization against diphtheria of previously immunized children. Am J Public Health Nations Health 32(7):700–708PubMedCrossRefGoogle Scholar
  3. 3.
    Volk VK, Bunney WE (1942) Diphtheria immunization with fluid toxoid and alum-precipitated toxoid. Am J Public Health Nations Health 32(7):690–699PubMedCrossRefGoogle Scholar
  4. 4.
    Aguilar JC, Rodriguez EG (2007) Vaccine adjuvants revisited. Vaccine 25(19):3752–3762PubMedCrossRefGoogle Scholar
  5. 5.
    McCluskie MJ, Weeratna RD (2001) Novel adjuvant systems. Curr Drug Targets Infect Disord 1(3):263–271PubMedCrossRefGoogle Scholar
  6. 6.
    Spickler AR, Roth JA (2003) Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17(3):273–281PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta RK et al (1993) Adjuvants—a balance between toxicity and adjuvanticity. Vaccine 11(3):293–306PubMedCrossRefGoogle Scholar
  8. 8.
    Gupta RK, Siber GR (1995) Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13(14):1263–1276PubMedCrossRefGoogle Scholar
  9. 9.
    Jensen OM, Koch C (1988) On the effect of Al(Oh)3 as an immunological adjuvant. APMIS 96(3):257–264CrossRefGoogle Scholar
  10. 10.
    Gupta RK, Siber GR (1994) Comparison of adjuvant activities of aluminium phosphate, calcium phosphate and stearyl tyrosine for tetanus toxoid. Biologicals 22(1):53–63PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32(3):155–172PubMedCrossRefGoogle Scholar
  12. 12.
    Marshall DJ et al (2006) Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 24(3):244–253PubMedCrossRefGoogle Scholar
  13. 13.
    Relyveld EH, Bizzini B, Gupta RK (1998) Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine 16(9–10):1016–1023PubMedCrossRefGoogle Scholar
  14. 14.
    Anon (1963) Jules Freund, 1890–1960. J Immunol 90:331–336Google Scholar
  15. 15.
    Anon (1960) Jules Freund. Lancet 1(7132):1031–1032Google Scholar
  16. 16.
    Claassen E et al (1992) Freund’s complete adjuvant: an effective but disagreeable formula. Res Immunol 143(5):478–483; discussion 572Google Scholar
  17. 17.
    Evans JT et al (2003) Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev Vaccines 2(2):219–229PubMedCrossRefGoogle Scholar
  18. 18.
    Tejada-Simon MV, Pestka JJ (1998) Production of polyclonal antibody against ergosterol hemisuccinate using Freund’s and Titermax adjuvants. J Food Prot 61(8):1060–1063PubMedGoogle Scholar
  19. 19.
    Allison AC, Byars NE (1992) Syntex adjuvant formulation. Res Immunol 143(5):519–525PubMedCrossRefGoogle Scholar
  20. 20.
    Brey RN (1995) Development of vaccines based on formulations containing nonionic block copolymers. Pharm Biotechnol 6:297–311PubMedCrossRefGoogle Scholar
  21. 21.
    O’Hagan DT, Wack A, Podda A (2007) MF59 is a safe and potent vaccine adjuvant for flu vaccines in humans: what did we learn during its development? Clin Pharmacol Ther 82(6):740–744PubMedCrossRefGoogle Scholar
  22. 22.
    O’Hagan DT (2007) MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines 6(5):699–710PubMedCrossRefGoogle Scholar
  23. 23.
    Walker WT, Faust SN (2010) Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev Vaccines 9(12):1385–1398PubMedCrossRefGoogle Scholar
  24. 24.
    Waddington C et al (2010) Open-label, randomised, parallel-group, multicentre study to evaluate the safety, tolerability and immunogenicity of an AS03(B)/oil-in-water emulsion-adjuvanted (AS03(B)) split-virion versus non-adjuvanted whole-virion H1N1 influenza vaccine in UK children 6 months to 12 years of age. Health Technol Assess 14(46):1–130PubMedGoogle Scholar
  25. 25.
    Wack A et al (2008) Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 26(4):552–561PubMedCrossRefGoogle Scholar
  26. 26.
    Pellegrini M et al (2009) MF59-adjuvanted versus non-adjuvanted influenza vaccines: integrated analysis from a large safety database. Vaccine 27(49):6959–6965PubMedCrossRefGoogle Scholar
  27. 27.
    Schwarz TF (2009) Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, Cervarix. Adv Ther 26(11):983–998PubMedCrossRefGoogle Scholar
  28. 28.
    Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27(25–26):3331–3334PubMedCrossRefGoogle Scholar
  29. 29.
    Lambrecht BN et al (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21(1):23–29PubMedCrossRefGoogle Scholar
  30. 30.
    Noe SM et al (2010) Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28(20):3588–3594PubMedCrossRefGoogle Scholar
  31. 31.
    Zaborsky N et al (2010) Antigen aggregation decides the fate of the allergic immune response. J Immunol 184(2):725–735PubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Nookala S, Re F (2007) Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol 178(8):5271–5276PubMedGoogle Scholar
  33. 33.
    Li H et al (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181(1):17–21PubMedGoogle Scholar
  34. 34.
    Aimanianda V et al (2009) Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci 30(6):287–295PubMedCrossRefGoogle Scholar
  35. 35.
    Eisenbarth SC et al (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453(7198):1122–1126PubMedCrossRefGoogle Scholar
  36. 36.
    Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81(1):1–5PubMedCrossRefGoogle Scholar
  37. 37.
    Schenten D, Medzhitov R (2011) The control of adaptive immune responses by the innate immune system. Adv Immunol 109:87–124PubMedCrossRefGoogle Scholar
  38. 38.
    Matzinger P (2002) An innate sense of danger. Ann N Y Acad Sci 961:341–342PubMedCrossRefGoogle Scholar
  39. 39.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305PubMedCrossRefGoogle Scholar
  40. 40.
    Gasse P et al (2009) Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med 179(10):903–913PubMedCrossRefGoogle Scholar
  41. 41.
    Denoble AE et al (2011) Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A 108(5):2088–2093PubMedCrossRefGoogle Scholar
  42. 42.
    Miyaji EN et al (2011) Trends in adjuvant development for vaccines: DAMPs and PAMPs as potential new adjuvants. Braz J Med Biol Res 44(6):500–513PubMedGoogle Scholar
  43. 43.
    Olive C (2012) Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 11(2):237–256PubMedCrossRefGoogle Scholar
  44. 44.
    Bayry J et al (2008) From ‘perfect mix’ to ‘potion magique’—regulatory T cells and anti-inflammatory cytokines as adjuvant targets. Nat Rev Microbiol 6(1):C1; author reply C2Google Scholar
  45. 45.
    Kornbluth RS, Stone GW (2006) Immunostimulatory combinations: designing the next generation of vaccine adjuvants. J Leukoc Biol 80(5):1084–1102PubMedCrossRefGoogle Scholar
  46. 46.
    Carlring J, Barr T, Heath AW (2005) Adjuvanticity of anti-CD40 in vaccine development. Curr Opin Mol Ther 7(1):73–77Google Scholar
  47. 47.
    Kanagavelu SK et al (2012) Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine. Vaccine 30(4):691–702PubMedCrossRefGoogle Scholar
  48. 48.
    Higgins SC, Mills KH (2010) TLR, NLR agonists, and other immune modulators as infectious disease vaccine adjuvants. Curr Infect Dis Rep 12(1):4–12PubMedCrossRefGoogle Scholar
  49. 49.
    Gherardi MM, Ramirez JC, Esteban M (2001) Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histol Histopathol 16(2):655–667PubMedGoogle Scholar
  50. 50.
    Yoon HA et al (2006) Cytokine GM-CSF genetic adjuvant facilitates prophylactic DNA vaccine against pseudorabies virus through enhanced immune responses. Microbiol Immunol 50(2):83–92PubMedGoogle Scholar
  51. 51.
    Portielje JE et al (2003) IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother 52(3):133–144PubMedGoogle Scholar
  52. 52.
    Metzger DW (2009) IL-12 as an adjuvant for the enhancement of protective humoral immunity. Expert Rev Vaccines 8(5):515–518PubMedCrossRefGoogle Scholar
  53. 53.
    Wright AK et al (2011) rhIL-12 as adjuvant augments lung cell cytokine responses to pneumococcal whole cell antigen. Immunobiology 216(10):1143–1147PubMedCrossRefGoogle Scholar
  54. 54.
    Palma C et al (2008) The LTK63 adjuvant improves protection conferred by Ag85B DNA-protein prime-boosting vaccination against Mycobacterium tuberculosis infection by dampening IFN-gamma response. Vaccine 26(33):4237–4243PubMedCrossRefGoogle Scholar
  55. 55.
    McSorley SJ et al (2002) Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol 169(7):3914–3919PubMedGoogle Scholar
  56. 56.
    Gupta S et al (2011) EBV LMP1, a viral mimic of CD40, activates dendritic cells and functions as a molecular adjuvant when incorporated into an HIV vaccine. J Leukoc Biol 90(2):389–398PubMedCrossRefGoogle Scholar
  57. 57.
    Rey-Ladino J et al (2011) Natural products and the search for novel vaccine adjuvants. Vaccine 29(38):6464–6471PubMedCrossRefGoogle Scholar
  58. 58.
    Ragupathi G et al (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10(4):463–470PubMedCrossRefGoogle Scholar
  59. 59.
    Kensil CR, Kammer R (1998) QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 7(9):1475–1482PubMedCrossRefGoogle Scholar
  60. 60.
    Liu G et al (2002) QS-21 structure/function studies: effect of acylation on adjuvant activity. Vaccine 20(21–22):2808–2815PubMedCrossRefGoogle Scholar
  61. 61.
    Evans TG et al (2001) QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 19(15–16):2080–2091PubMedCrossRefGoogle Scholar
  62. 62.
    Ogawa C, Liu YJ, Kobayashi KS (2011) Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 7(3):180–197PubMedCrossRefGoogle Scholar
  63. 63.
    Aucouturier J et al (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1(1):111–118PubMedCrossRefGoogle Scholar
  64. 64.
    Enoksson M et al (2011) Human cord blood-derived mast cells are activated by the Nod1 agonist M-TriDAP to release pro-inflammatory cytokines and chemokines. J Innate Immun 3(2):142–149PubMedCrossRefGoogle Scholar
  65. 65.
    Mata-Haro V et al (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316(5831):1628–1632PubMedCrossRefGoogle Scholar
  66. 66.
    Cluff CW (2010) Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 667:111–123PubMedCrossRefGoogle Scholar
  67. 67.
    Schromm AB et al (2007) Physicochemical and biological analysis of synthetic bacterial lipopeptides: validity of the concept of endotoxic conformation. J Biol Chem 282(15):11030–11037PubMedCrossRefGoogle Scholar
  68. 68.
    Coler RN et al (2010) A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS One 5(10):e13677PubMedCrossRefGoogle Scholar
  69. 69.
    Raman VS et al (2010) Applying TLR synergy in immunotherapy: implications in cutaneous leishmaniasis. J Immunol 185(3):1701–1710PubMedCrossRefGoogle Scholar
  70. 70.
    Buwitt-Beckmann U et al (2005) Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol 35(1):282–289PubMedCrossRefGoogle Scholar
  71. 71.
    Allison AC (1999) Squalene and squalane emulsions as adjuvants. Methods 19(1):87–93PubMedCrossRefGoogle Scholar
  72. 72.
    Kalvodova L (2010) Squalene-based oil-in-water emulsion adjuvants perturb metabolism of neutral lipids and enhance lipid droplet formation. Biochem Biophys Res Commun 393(3):350–355PubMedCrossRefGoogle Scholar
  73. 73.
    Brito LA et al (2011) An alternative renewable source of squalene for use in emulsion adjuvants. Vaccine 29(37):6262–6268PubMedCrossRefGoogle Scholar
  74. 74.
    Kensil CR et al (1998) QS-21 and QS-7: purified saponin adjuvants. Dev Biol Stand 92:41–47PubMedGoogle Scholar
  75. 75.
    Kensil CR, Wu JY, Soltysik S (1995) Structural and immunological characterization of the vaccine adjuvant QS-21. Pharm Biotechnol 6:525–541PubMedCrossRefGoogle Scholar
  76. 76.
    Chapman PB et al (2000) Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-keyhole limpet hemocyanin + QS21 vaccine: a dose–response study. Clin Cancer Res 6(3):874–879PubMedGoogle Scholar
  77. 77.
    Moreno CA et al (1999) Preclinical evaluation of a synthetic Plasmodium falciparum MAP malaria vaccine in Aotus monkeys and mice. Vaccine 18(1–2):89–99PubMedCrossRefGoogle Scholar
  78. 78.
    Hancock GE et al (1995) Formulation of the purified fusion protein of respiratory syncytial virus with the saponin QS-21 induces protective immune responses in Balb/c mice that are similar to those generated by experimental infection. Vaccine 13(4):391–400PubMedCrossRefGoogle Scholar
  79. 79.
    Oliveira-Freitas E et al (2006) Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis. Vaccine 24(18):3909–3920PubMedCrossRefGoogle Scholar
  80. 80.
    Soltysik S et al (1995) Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13(15):1403–1410PubMedCrossRefGoogle Scholar
  81. 81.
    Yan W et al (2010) Bryostatin-I: a dendritic cell stimulator for chemokines induction and a promising adjuvant for a peptide based cancer vaccine. Cytokine 52(3):238–244PubMedCrossRefGoogle Scholar
  82. 82.
    Clamp A, Jayson GC (2002) The clinical development of the bryostatins. Anticancer Drugs 13(7):673–683PubMedCrossRefGoogle Scholar
  83. 83.
    Pettit GR et al (1991) Isolation and structure of the cell growth inhibitory constituents from the western Pacific marine sponge Axinella sp. J Med Chem 34(11):3339–3340PubMedCrossRefGoogle Scholar
  84. 84.
    Do Y et al (2004) Bryostatin-1 enhances the maturation and antigen-presenting ability of murine and human dendritic cells. Cancer Res 64(18):6756–6765PubMedCrossRefGoogle Scholar
  85. 85.
    Li H et al (2006) IFN-gamma and T-bet expression in human dendritic cells from normal donors and cancer patients is controlled through mechanisms involving ERK-1/2-dependent and IL-12-independent pathways. J Immunol 177(6):3554–3563PubMedGoogle Scholar
  86. 86.
    Yan H, Chen W (2010) 3′,5′-Cyclic diguanylic acid: a small nucleotide that makes big impacts. Chem Soc Rev 39(8):2914–2924PubMedCrossRefGoogle Scholar
  87. 87.
    Chen W, Kuolee R, Yan H (2010) The potential of 3′,5′-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine 28(18):3080–3085PubMedCrossRefGoogle Scholar
  88. 88.
    Ebensen T et al (2011) Bis-(3′,5′)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29(32):5210–5220PubMedCrossRefGoogle Scholar
  89. 89.
    Madhun AS et al (2011) Intranasal c-di-GMP-adjuvanted plant-derived H5 influenza vaccine induces multifunctional Th1 CD4+ cells and strong mucosal and systemic antibody responses in mice. Vaccine 29(31):4973–4982PubMedCrossRefGoogle Scholar
  90. 90.
    Bode C et al (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511PubMedCrossRefGoogle Scholar
  91. 91.
    Klinman DM et al (2009) CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 61(3):248–255PubMedCrossRefGoogle Scholar
  92. 92.
    Klinman D et al (2008) Synthetic oligonucleotides as modulators of inflammation. J Leukoc Biol 84(4):958–964PubMedCrossRefGoogle Scholar
  93. 93.
    Ballas ZK et al (2001) Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol 167(9):4878–4886PubMedGoogle Scholar
  94. 94.
    Stacey KJ, Blackwell JM (1999) Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major. Infect Immun 67(8):3719–3726PubMedGoogle Scholar
  95. 95.
    Cui Z, Qiu F (2006) Synthetic double-stranded RNA poly(I:C) as a potent peptide vaccine adjuvant: therapeutic activity against human cervical cancer in a rodent model. Cancer Immunol Immunother 55(10):1267–1279PubMedCrossRefGoogle Scholar
  96. 96.
    Luganini A et al (2008) Phosphorothioate-modified oligodeoxynucleotides inhibit human cytomegalovirus replication by blocking virus entry. Antimicrob Agents Chemother 52(3):1111–1120PubMedCrossRefGoogle Scholar
  97. 97.
    Sasaki S et al (1998) Adjuvant effect of Ubenimex on a DNA vaccine for HIV-1. Clin Exp Immunol 111(1):30–35PubMedCrossRefGoogle Scholar
  98. 98.
    Peng HJ et al (2004) Comparison of different adjuvants of protein and DNA vaccination for the prophylaxis of IgE antibody formation. Vaccine 22(5–6):755–761PubMedGoogle Scholar
  99. 99.
    Huang CF et al (2012) Induction of specific Th1 responses and suppression of IgE antibody formation by vaccination with plasmid DNA encoding Cyn d 1. Int Arch Allergy Immunol 158(2):142–150PubMedCrossRefGoogle Scholar
  100. 100.
    Lu H et al (2008) Enhancing effects of the chemical adjuvant levamisole on the DNA vaccine pVIR-P12A-IL18-3C. Microbiol Immunol 52(9):440–446PubMedCrossRefGoogle Scholar
  101. 101.
    Alavian SM, Tabatabaei SV (2010) Effects of oral levamisole as an adjuvant to hepatitis B vaccine in adults with end-stage renal disease: a meta-analysis of controlled clinical trials. Clin Ther 32(1):1–10PubMedCrossRefGoogle Scholar
  102. 102.
    Smahel M et al (2011) Systemic administration of CpG oligodeoxynucleotide and levamisole as adjuvants for gene-gun-delivered antitumor DNA vaccines. Clin Dev Immunol 2011:176759PubMedCrossRefGoogle Scholar
  103. 103.
    Wang B et al (1993) Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 90(9):4156–4160PubMedCrossRefGoogle Scholar
  104. 104.
    Jin H et al (2004) Effect of chemical adjuvants on DNA vaccination. Vaccine 22(21–22):2925–2935PubMedCrossRefGoogle Scholar
  105. 105.
    McLachlan JB et al (2008) Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 14(5):536–541PubMedCrossRefGoogle Scholar
  106. 106.
    Stevenson HC et al (1991) Levamisole—known effects on the immune-system, clinical-results, and future applications to the treatment of cancer. J Clin Oncol 9(11):2052–2066PubMedGoogle Scholar
  107. 107.
    Suda H et al (1976) Inhibition of aminopeptidase-B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys 177(1):196–200PubMedCrossRefGoogle Scholar
  108. 108.
    Umezawa H et al (1976) Bestatin, an inhibitor of aminopeptidase-B, produced by actinomycetes. J Antibiot 29(1):97–99PubMedCrossRefGoogle Scholar
  109. 109.
    Brown TCK (2012) History of pediatric regional anesthesia. Pediatr Anaesth 22(1):3–9CrossRefGoogle Scholar
  110. 110.
    Miller RL et al (1999) Treatment of primary herpes simplex virus infection in guinea pigs by imiquimod. Antiviral Res 44(1):31–42PubMedCrossRefGoogle Scholar
  111. 111.
    Sauder DN (2000) Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol 43(1):S6–S11PubMedCrossRefGoogle Scholar
  112. 112.
    Suzuki H et al (2000) Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 114(1):135–141PubMedCrossRefGoogle Scholar
  113. 113.
    Tomai MA et al (2007) Resiquimod and other immune response modifiers as vaccine adjuvants. Expert Rev Vaccines 6(5):835–847PubMedCrossRefGoogle Scholar
  114. 114.
    Ma F, Zhang J, Zhang C (2010) The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 7(5):381–388PubMedCrossRefGoogle Scholar
  115. 115.
    Dzopalic T et al (2010) Loxoribine, a selective Toll-like receptor 7 agonist, induces maturation of human monocyte-derived dendritic cells and stimulates their Th-1- and Th-17-polarizing capability. Int Immunopharmacol 10(11):1428–1433PubMedCrossRefGoogle Scholar
  116. 116.
    Sharma BS et al (1991) Potentiation of the efficacy of murine L1210 leukemia vaccine by a novel immunostimulator 7-thia-8-oxoguanosine: increased survival after immunization with vaccine plus 7-thia-8-oxoguanosine. Cancer Immunol Immunother 33(2):109–114PubMedCrossRefGoogle Scholar
  117. 117.
    McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11(5):494–502PubMedCrossRefGoogle Scholar
  118. 118.
    Ripphausen P et al (2010) Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53(24):8461–8467PubMedCrossRefGoogle Scholar
  119. 119.
    Bajorath J (2010) Computational studies, virtual screening, and theoretical molecular models. J Med Chem 53(1):1–2PubMedCrossRefGoogle Scholar
  120. 120.
    Hattotuwagama CK, Davies MN, Flower DR (2006) Receptor-ligand binding sites and virtual screening. Curr Med Chem 13(11):1283–1304PubMedCrossRefGoogle Scholar
  121. 121.
    Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45(1):177–182PubMedCrossRefGoogle Scholar
  122. 122.
    Flower DR (1998) DISSIM: a program for the analysis of chemical diversity. J Mol Graph Model 16(4–6):239–253, 264Google Scholar
  123. 123.
    Davis AM et al (2005) Components of successful lead generation. Curr Top Med Chem 5(4):421–439PubMedCrossRefGoogle Scholar
  124. 124.
    Lagorce D et al (2011) The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 27(14):2018–2020PubMedCrossRefGoogle Scholar
  125. 125.
    Lagorce D et al (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 9:396PubMedCrossRefGoogle Scholar
  126. 126.
    Miteva MA et al (2006) FAF-drugs: free ADME/tox filtering of compound collections. Nucleic Acids Res 34(Web Server issue):W738–W744PubMedCrossRefGoogle Scholar
  127. 127.
    Khan MT, Sylte I (2007) Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules. Curr Drug Discov Technol 4(3):141–149PubMedCrossRefGoogle Scholar
  128. 128.
    Khan MT (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295PubMedCrossRefGoogle Scholar
  129. 129.
    Moroy G et al (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17(1–2):44–55PubMedCrossRefGoogle Scholar
  130. 130.
    Charoenvit Y et al (2004) CEL-1000—a peptide with adjuvant activity for Th1 immune responses. Vaccine 22(19):2368–2373PubMedCrossRefGoogle Scholar
  131. 131.
    Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338(7):436–445PubMedCrossRefGoogle Scholar
  132. 132.
    Rees S, Morrow D, Kenakin T (2002) GPCR drug discovery through the exploitation of allosteric drug binding sites. Receptors Channels 8(5–6):261–268PubMedCrossRefGoogle Scholar
  133. 133.
    Gether U et al (2002) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol 91(6):304–312PubMedCrossRefGoogle Scholar
  134. 134.
    Feng Y et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872–877PubMedCrossRefGoogle Scholar
  135. 135.
    Bayry J et al (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci U S A 105(29):10221–10226PubMedCrossRefGoogle Scholar
  136. 136.
    Davies MN et al (2009) Toward the discovery of vaccine adjuvants: coupling in silico screening and in vitro analysis of antagonist binding to human and mouse CCR4 receptors. PLoS One 4(11):e8084PubMedCrossRefGoogle Scholar
  137. 137.
    Pere H et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118(18):4853–4862PubMedCrossRefGoogle Scholar
  138. 138.
    Schijns VE, Tangeras A (2005) Vaccine adjuvant technology: from theoretical mechanisms to practical approaches. Dev Biol (Basel) 121:127–134Google Scholar
  139. 139.
    Degen WG, Jansen T, Schijns VE (2003) Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev Vaccines 2(2):327–335PubMedCrossRefGoogle Scholar
  140. 140.
    Schijns VE (2003) Mechanisms of vaccine adjuvant activity: initiation and regulation of immune responses by vaccine adjuvants. Vaccine 21(9–10):829–831PubMedCrossRefGoogle Scholar
  141. 141.
    Schijns VE (2000) Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol 12(4):456–463PubMedCrossRefGoogle Scholar
  142. 142.
    Garcon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10(4):471–486PubMedCrossRefGoogle Scholar
  143. 143.
    Schellack C et al (2006) IC31, a novel adjuvant signaling via TLR9, induces potent cellular and humoral immune responses. Vaccine 24(26):5461–5472PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Life and Health SciencesAston UniversityBirminghamUK

Personalised recommendations