Skip to main content

Post-genomic Antigen Discovery: Bioinformatical Approaches to Reveal Novel T Cell Antigens of Mycobacterium bovis

  • Chapter
  • First Online:
Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines

Part of the book series: Immunomics Reviews: ((IMMUN,volume 5))

Abstract

The elucidation of the genomes of pathogenic mycobacteria and the application of bioinformatic tools has greatly assisted the process of defining antigenic proteins for diagnosis of, and subunit vaccination against, bovine tuberculosis. By applying in silico genome comparisons or transcriptome comparisons, it was possible to prioritise potentially specific and immunogenic proteins for testing in infected or vaccinated cattle. These approaches led to the identification of antigens supporting discrimination of infected from vaccinated animals (DIVA diagnosis) or subunit vaccine candidates. Some progress has also been made to develop algorithms predicting peptides binding to bovine major histocompatibility complex class II molecules. The following chapter will review these advances and consider them in the context of bovine TB vaccine development programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LoBue PA, Enarson DA, Thoen CO (2010) Tuberculosis in humans and animals: an overview. Int J Tuberc Lung Dis 14(9):1075–1078

    PubMed  CAS  Google Scholar 

  2. Thoen CO, Lobue PA, Enarson DA, Kaneene JB, de Kantor IN (2009) Tuberculosis: a re-emerging disease in animals and humans. Vet Ital 45(1):135–181

    PubMed  Google Scholar 

  3. Buddle BM, Wedlock DN, Denis M (2006) Progress in the development of tuberculosis vaccines for cattle and wildlife. Vet Microbiol 112(2–4):191–200

    Article  PubMed  CAS  Google Scholar 

  4. Buddle BM, Wedlock DN, Denis M, Vordermeier HM, Hewinson RG (2011) Update on vaccination of cattle and wildlife populations against tuberculosis. Vet Microbiol 151(1–2):14–22. doi:S0378-1135(11)00102-7[pii]10.1016/j.vetmic.2011.02.021

    Article  PubMed  Google Scholar 

  5. Hogarth PJ, Hewinson RG, Vordermeier HM (2006) Development of vaccines against bovine tuberculosis. J Pharm Pharmacol 58(6):749–757

    Article  PubMed  CAS  Google Scholar 

  6. Vordermeier HM, Chambers MA, Buddle BM, Pollock JM, Hewinson RG (2006) Progress in the development of vaccines and diagnostic reagents to control tuberculosis in cattle. Vet J 171(2):229–244

    Article  PubMed  CAS  Google Scholar 

  7. Skinner MA, Buddle BM, Wedlock DN, Keen D, de Lisle GW, Tascon RE, Ferraz JC, Lowrie DB, Cockle PJ, Vordermeier HM, Hewinson RG (2003) A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect Immun 71(9):4901–4907

    Article  PubMed  CAS  Google Scholar 

  8. Skinner MA, Wedlock DN, de Lisle GW, Cooke MM, Tascon RE, Ferraz JC, Lowrie DB, Vordermeier HM, Hewinson RG, Buddle BM (2005) The order of prime-boost vaccination of neonatal calves with Mycobacterium bovis BCG and a DNA vaccine encoding mycobacterial proteins Hsp65, Hsp70, and Apa is not critical for enhancing protection against bovine tuberculosis. Infect Immun 73(7):4441–4444

    Article  PubMed  CAS  Google Scholar 

  9. Wedlock DN, Skinner MA, de Lisle GW, Vordermeier HM, Hewinson RG, Hecker R, van Drunen Littel-van den Hurk S, Babiuk LA, Buddle BM (2005) Vaccination of cattle with Mycobacterium bovis culture filtrate proteins and CpG oligodeoxynucleotides induces protection against bovine tuberculosis. Vet Immunol Immunopathol 106(1–2):53–63

    Article  PubMed  CAS  Google Scholar 

  10. Vordermeier HM, Huygen K, Singh M, Hewinson RG, Xing Z (2006) Immune responses induced in cattle by vaccination with a recombinant adenovirus expressing Mycobacterial antigen 85A and Mycobacterium bovis BCG. Infect Immun 74(2):1416–1418

    Article  PubMed  CAS  Google Scholar 

  11. Vordermeier HM, Rhodes SG, Dean G, Goonetilleke N, Huygen K, Hill AV, Hewinson RG, Gilbert SC (2004) Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology 112(3):461–470

    Article  PubMed  CAS  Google Scholar 

  12. Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, Thacker T, Gilbert SC, McShane H, Hill AV, Xing Z, Hewinson RG (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77(8):3364–3373. doi:IAI.00287-09[pii]10.1128/IAI.00287-09

    Article  PubMed  CAS  Google Scholar 

  13. Neill SD, Bryson DG, Pollock JM (2001) Pathogenesis of tuberculosis in cattle. Tuberculosis (Edinb) 81(1–2):79–86

    Article  CAS  Google Scholar 

  14. Pollock JM, McNair J, Welsh MD, Girvin RM, Kennedy HE, Mackie DP, Neill SD (2001) Immune responses in bovine tuberculosis. Tuberculosis (Edinb) 81(1–2):103–107

    Article  CAS  Google Scholar 

  15. Ritacco V, Lopez B, De Kantor IN, Barrera L, Errico F, Nader A (1991) Reciprocal cellular and humoral immune responses in bovine tuberculosis. Res Vet Sci 50(3):365–367

    Article  PubMed  CAS  Google Scholar 

  16. Rothel JS, Jones SL, Corner LA, Cox JC, Wood PR (1990) A sandwich enzyme immunoassay for bovine interferon-gamma and its use for the detection of tuberculosis in cattle. Aust Vet J 67(4):134–137

    Article  PubMed  CAS  Google Scholar 

  17. Rothel JS, Jones SL, Corner LA, Cox JC, Wood PR (1992) The gamma-interferon assay for diagnosis of bovine tuberculosis in cattle: conditions affecting the production of gamma-interferon in whole blood culture. Aust Vet J 69(1):1–4

    Article  PubMed  CAS  Google Scholar 

  18. Buddle BM, Parlane NA, Keen DL, Aldwell FE, Pollock JM, Lightbody K, Andersen P (1999) Differentiation between Mycobacterium bovis BCG-vaccinated and M. bovis-infected cattle by using recombinant mycobacterial antigens. Clin Diagn Lab Immunol 6(1):1–5

    PubMed  CAS  Google Scholar 

  19. Vordermeier HM, Cockle PC, Whelan A, Rhodes S, Palmer N, Bakker D, Hewinson RG (1999) Development of diagnostic reagents to differentiate between Mycobacterium bovis BCG vaccination and M. bovis infection in cattle. Clin Diagn Lab Immunol 6(5):675–682

    PubMed  CAS  Google Scholar 

  20. Pollock JM, Andersen P (1997) Predominant recognition of the ESAT-6 protein in the first phase of interferon with Mycobacterium bovis in cattle. Infect Immun 65(7):2587–2592

    PubMed  CAS  Google Scholar 

  21. Pollock JM, Andersen P (1997) The potential of the ESAT-6 antigen secreted by virulent mycobacteria for specific diagnosis of tuberculosis. J Infect Dis 175(5):1251–1254

    Article  PubMed  CAS  Google Scholar 

  22. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284(5419):1520–1523

    Article  PubMed  CAS  Google Scholar 

  23. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100(13):7877–7882

    Article  PubMed  CAS  Google Scholar 

  24. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32(3):643–655

    Article  PubMed  CAS  Google Scholar 

  25. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178(5):1274–1282

    PubMed  CAS  Google Scholar 

  26. Vordermeier HM, Whelan A, Cockle PJ, Farrant L, Palmer N, Hewinson RG (2001) Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle. Clin Diagn Lab Immunol 8(3):571–578

    PubMed  CAS  Google Scholar 

  27. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Article  PubMed  CAS  Google Scholar 

  28. Waters WR, Palmer MV, Nonnecke BJ, Thacker TC, Scherer CF, Estes DM, Hewinson RG, Vordermeier HM, Barnes SW, Federe GC, Walker JR, Glynne RJ, Hsu T, Weinrick B, Biermann K, Larsen MH, Jacobs WR Jr (2009) Efficacy and immunogenicity of Mycobacterium bovis DeltaRD1 against aerosol M. bovis infection in neonatal calves. Vaccine 27(8):1201–1209. doi:S0264-410X(08)01752-0[pii]10.1016/j.vaccine.2008.12.018

    Article  PubMed  CAS  Google Scholar 

  29. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, Inwald JK, Golby P, Garcia JN, Hewinson RG, Behr MA, Quail MA, Churcher C, Barrell BG, Parkhill J, Cole ST (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 104(13):5596–5601

    Article  PubMed  CAS  Google Scholar 

  30. Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ, Alt D, Banerji N, Kanjilal S, Kapur V (2005) The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci USA 102(35):12344–12349

    Article  PubMed  CAS  Google Scholar 

  31. Cockle PJ, Gordon SV, Lalvani A, Buddle BM, Hewinson RG, Vordermeier HM (2002) Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect Immun 70(12):6996–7003

    Article  PubMed  CAS  Google Scholar 

  32. Cockle PJ, Gordon SV, Hewinson RG, Vordermeier HM (2006) Field evaluation of a novel differential diagnostic reagent for detection of Mycobacterium bovis in cattle. Clin Vaccine Immunol 13(10):1119–1124

    Article  PubMed  CAS  Google Scholar 

  33. Aagaard C, Govaerts M, Meikle V, Vallecillo AJ, Gutierrez-Pabello JA, Suarez-Guemes F, McNair J, Cataldi A, Espitia C, Andersen P, Pollock JM (2006) Optimizing antigen cocktails for detection of Mycobacterium bovis in herds with different prevalences of bovine tuberculosis: ESAT6-CFP10 mixture shows optimal sensitivity and specificity. J Clin Microbiol 44(12):4326–4335. doi:JCM.01184-06[pii]10.1128/JCM.01184-06

    Article  PubMed  CAS  Google Scholar 

  34. Aagaard C, Govaerts M, Meng Okkels L, Andersen P, Pollock JM (2003) Genomic approach to identification of Mycobacterium bovis diagnostic antigens in cattle. J Clin Microbiol 41(8):3719–3728

    Article  PubMed  CAS  Google Scholar 

  35. Vordermeier M, Goodchild A, Clifton-Hadley R, de la Rua R (2004) The interferon-gamma field trial: background, principles and progress. Vet Rec 155(2):37–38

    PubMed  CAS  Google Scholar 

  36. Aagaard C, Hoang TT, Izzo A, Billeskov R, Troudt J, Arnett K, Keyser A, Elvang T, Andersen P, Dietrich J (2009) Protection and polyfunctional T cells induced by Ag85B-TB10.4/IC31 against Mycobacterium tuberculosis is highly dependent on the antigen dose. PLoS One 4(6):e5930. doi:10.1371/journal.pone.0005930

    Article  PubMed  Google Scholar 

  37. Hewinson RG, Vordermeier HM, Smith NH, Gordon SV (2006) Recent advances in our knowledge of Mycobacterium bovis: a feeling for the organism. Vet Microbiol 112(2–4):127–139

    Article  PubMed  Google Scholar 

  38. Vordermeier HM, Brown J, Cockle PJ, Franken WP, Drijfhout JW, Arend SM, Ottenhoff TH, Jahans K, Hewinson RG (2007) Assessment of cross-reactivity between Mycobacterium bovis and M. kansasii ESAT-6 and CFP-10 at the T-cell epitope level. Clin Vaccine Immunol 14(9):1203–1209. doi:CVI.00116-07[pii]10.1128/CVI.00116-07

    Article  PubMed  CAS  Google Scholar 

  39. Jones GJ, Gordon SV, Hewinson RG, Vordermeier HM (2010) Screening of predicted secreted antigens from Mycobacterium bovis reveals the immunodominance of the ESAT-6 protein family. Infect Immun 78(3):1326–1332. doi:IAI.01246-09[pii]10.1128/IAI.01246-09

    Article  PubMed  CAS  Google Scholar 

  40. Jones GJ, Hewinson RG, Vordermeier HM (2010) Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents. Clin Vaccine Immunol 17(9):1344–1348. doi:CVI.00261-10[pii]10.1128/CVI.00261-10

    Article  PubMed  CAS  Google Scholar 

  41. Sidders B, Withers M, Kendall SL, Bacon J, Waddell SJ, Hinds J, Golby P, Movahedzadeh F, Cox RA, Frita R, Ten Bokum AM, Wernisch L, Stoker NG (2007) Quantification of global transcription patterns in prokaryotes using spotted microarrays. Genome Biol 8(12):R265. doi:gb-2007-8-12-r265[pii]10.1186/gb-2007-8-12-r265

    Article  PubMed  Google Scholar 

  42. Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA (2005) Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 56(5):1302–1313. doi:MMI4618[pii]10.1111/j.1365-2958.2005.04618.x

    Article  PubMed  CAS  Google Scholar 

  43. Wiker HG (2009) MPB70 and MPB83–major antigens of Mycobacterium bovis. Scand J Immunol 69(6):492–499. doi:SJI2256[pii]10.1111/j.1365-3083.2009.02256.x

    Article  PubMed  CAS  Google Scholar 

  44. Sidders B, Pirson C, Hogarth PJ, Hewinson RG, Stoker NG, Vordermeier HM, Ewer K (2008) Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect Immun 76(9):3932–3939. doi:IAI.00150-08[pii]10.1128/IAI.00150-08

    Article  PubMed  CAS  Google Scholar 

  45. Millington KA, Fortune SM, Low J, Garces A, Hingley-Wilson SM, Wickremasinghe M, Kon OM, Lalvani A (2011) Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 108(14):5730–5735. doi:1015153108[pii]10.1073/pnas.1015153108

    Article  PubMed  CAS  Google Scholar 

  46. DiGuiseppe Champion PA, Cox JS (2007) Protein secretions systems in Mycobacteria. Cell Microbiol 9:1376–1384

    Article  Google Scholar 

  47. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: insights into the Phagosomal Environment. J Exp Med 198(5):693–704

    Article  PubMed  CAS  Google Scholar 

  48. Demissie A, Leyten EM, Abebe M, Wassie L, Aseffa A, Abate G, Fletcher H, Owiafe P, Hill PC, Brookes R, Rook G, Zumla A, Arend SM, Klein M, Ottenhoff TH, Andersen P, Doherty TM (2006) Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin Vaccine Immunol 13(2):179–186

    Article  PubMed  CAS  Google Scholar 

  49. Geluk A, Lin MY, van Meijgaarden KE, Leyten EM, Franken KL, Ottenhoff TH, Klein MR (2007) T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 75(6):2914–2921

    Article  PubMed  CAS  Google Scholar 

  50. Leyten EM, Lin MY, Franken KL, Friggen AH, Prins C, van Meijgaarden KE, Voskuil MI, Weldingh K, Andersen P, Schoolnik GK, Arend SM, Ottenhoff TH, Klein MR (2006) Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect 8(8):2052–2060

    Article  PubMed  CAS  Google Scholar 

  51. Lin MY, Geluk A, Smith SG, Stewart AL, Friggen AH, Franken KL, Verduyn MJ, van Meijgaarden KE, Voskuil MI, Dockrell HM, Huygen K, Ottenhoff TH, Klein MR (2007) Lack of Immune Responses to Mycobacterium tuberculosis DosR Regulon Proteins following Mycobacterium bovis BCG Vaccination. Infect Immun 75(7):3523–3530

    Article  PubMed  CAS  Google Scholar 

  52. Rustad TR, Harrell MI, Liao R, Sherman DR (2008) The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3(1):e1502

    Article  PubMed  Google Scholar 

  53. Jones GJ, Pirson C, Gideon HP, Wilkinson KA, Sherman DR, Wilkinson RJ, Hewinson RG, Vordermeier HM (2011) Immune responses to the Enduring Hypoxia Response antigen Rv0188 are preferentially detected in Mycobacterium bovis infected cattle with low pathology. PLoS One 6(6):e21371

    Article  PubMed  CAS  Google Scholar 

  54. Arnvig KB, Young DB (2009) Identification of small RNAs in Mycobacterium tuberculosis. Mol Microbiol 73(3):397–408. doi:MMI6777[pii]10.1111/j.1365-2958.2009.06777.x

    Article  PubMed  CAS  Google Scholar 

  55. DiChiara JM, Contreras-Martinez LM, Livny J, Smith D, McDonough KA, Belfort M (2010) Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res 38(12):4067–4078. doi:gkq101[pii]10.1093/nar/gkq101

    Article  PubMed  CAS  Google Scholar 

  56. Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319. doi:10.1146/annurev.biochem.052208.151733

    Article  PubMed  CAS  Google Scholar 

  57. Gimpel M, Heidrich N, Mader U, Krugel H, Brantl S (2010) A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol Microbiol 76(4):990–1009. doi:MMI7158[pii]10.1111/j.1365-2958.2010.07158.x

    Article  PubMed  CAS  Google Scholar 

  58. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21(11):1353–1366. doi:21/11/1353[pii]10.1101/gad.423507

    Article  PubMed  CAS  Google Scholar 

  59. Wadler CS, Vanderpool CK (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA 104(51):20454–20459. doi:0708102104[pii]10.1073/pnas.0708102104

    Article  PubMed  CAS  Google Scholar 

  60. Amills M, Ramiya V, Norimine J, Lewin HA (1998) The major histocompatibility complex of ruminants. Rev Sci Tech 17(1):108–120

    PubMed  CAS  Google Scholar 

  61. Lewin HA, Russell GC, Glass EJ (1999) Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev 167:145–158

    Article  PubMed  CAS  Google Scholar 

  62. Glass EJ (2004) Genetic variation and responses to vaccines. Anim Health Res Rev 5:197–208

    Article  PubMed  Google Scholar 

  63. Bamford AI, Douglas A, Friede T, Stevanovic S, Rammensee HG, Adair BM (1995) Peptide motif of a cattle MHC class I molecule. Immunol Lett 45(1–2):129–136

    Article  PubMed  CAS  Google Scholar 

  64. Hegde NR, Deshpande MS, Godson DL, Babiuk LA, Srikumaran S (1999) Bovine lymphocyte antigen-A11–specific peptide motif as a means to identify cytotoxic T-lymphocyte epitopes of bovine herpesvirus 1. Viral Immunol 12(2):149–161

    Article  PubMed  CAS  Google Scholar 

  65. Gerner W, Hammer SE, Wiesmuller KH, Saalmuller A (2009) Identification of major histocompatibility complex restriction and anchor residues of foot-and-mouth disease virus-derived bovine T-cell epitopes. J Virol 83(9):4039–4050. doi:JVI.01534-08[pii]10.1128/JVI.01534-08

    Article  PubMed  CAS  Google Scholar 

  66. De Groot AS, Nene V, Hegde NR, Srikumaran S, Rayner J, Martin W (2003) T cell epitope identification for bovine vaccines: an epitope mapping method for BoLA A-11. Int J Parasitol 33(5–6):641–653. doi:S0020751903000511[pii]

    Article  PubMed  Google Scholar 

  67. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  PubMed  CAS  Google Scholar 

  68. Vordermeier M, Whelan AO, Hewinson RG (2003) Recognition of mycobacterial epitopes by T cells across mammalian species and use of a program that predicts human HLA-DR binding peptides to predict bovine epitopes. Infect Immun 71(4):1980–1987

    Article  PubMed  CAS  Google Scholar 

  69. Jones GJ, Bagaini F, Hewinson RG, Vordermeier HM (2011) The use of binding-prediction models to identify M. bovis-specific antigenic peptides for screening assays in bovine tuberculosis. Vet Immunol Immunopathol 141(3–4):239–245. doi:S0165-2427(11)00089-4[pii]10.1016/j.vetimm.2011.03.006

    Article  PubMed  CAS  Google Scholar 

  70. Gey Van Pittius NC, Gamieldien J, Hide W, Brown GD, Siezen RJ, Beyers AD (2001) The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2(10), RESEARCH0044

    Google Scholar 

  71. Vordermeier HM, Hewinson RG, Wilkinson RJ, Wilkinson KA, Gideon HP, Young DB, Sampson SL (2012) Conserved Immune Recognition Hierarchy of Mycobacterial PE/PPE Proteins during Infection in Natural Hosts. PLoS One. 7:e40890

    Google Scholar 

  72. Whelan AO, Clifford D, Upadhyay B, Breadon EL, McNair J, Hewinson GR, Vordermeier MH (2010) Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J Clin Microbiol 48(9):3176–3181. doi:JCM.00420-10[pii]10.1128/JCM.00420-10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Department for Environment, Food and Rural Affairs UK and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vordermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vordermeier, M., Jones, G.J., Sampson, S., Gordon, S.V. (2013). Post-genomic Antigen Discovery: Bioinformatical Approaches to Reveal Novel T Cell Antigens of Mycobacterium bovis . In: Flower, D., Perrie, Y. (eds) Immunomic Discovery of Adjuvants and Candidate Subunit Vaccines. Immunomics Reviews:, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5070-2_4

Download citation

Publish with us

Policies and ethics