Advertisement

Designing Nonionic Surfactant Vesicles for the Delivery of Antigens for Systemic and Alternative Delivery Routes

  • Jitinder Wilkhu
  • Anil Vangala
  • Afzal R. Mohammed
  • Yvonne Perrie
Chapter
Part of the Immunomics Reviews: book series (IMMUN, volume 5)

Abstract

Bilayer vesicles can be prepared from a range of molecules including nonionic surfactants. Vesicles built from nonionic surfactants are known as nonionic surfactant vesicles or niosomes. Whilst structurally similar to liposomes, the use of nonionic surfactants in a formulation may offer advantages in terms of chemical stability and reduced cost in some cases. In general, the ability of surfactant blends to form vesicles is dependent on their combined critical packing parameter, with cholesterol often being used to support the formation of vesicle constructs. To enhance the potency and delivery of antigens, niosomes can be designed to protect antigens against degradation in harsh in vivo environments, including the oral route, and enhance delivery of antigens to appropriate target sites. Key considerations in the design of niosomal adjuvants include the choice of surfactants, the surface properties of the vesicles, the method of preparation, the cholesterol content and the inclusion of immunostimulatory agents. Manipulation of these attributes allows vesicle constructs to be designed and built that can be used to deliver antigens via a range of delivery routes.

Keywords

Zeta Potential Nonionic Surfactant Entrapment Efficiency Vesicle Size Vaccine Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ali MH, Kirby DJ, Mohammed AR, Perrie Y (2010) Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent. J Pharm Pharmacol 62(11):1646–1655PubMedCrossRefGoogle Scholar
  2. 2.
    Allen TM, Hansen CB, de Menezes DEL (1995) Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 16(2–3):267–284CrossRefGoogle Scholar
  3. 3.
    Almeida J, Edwards DC, Brand C, Heath T (1975) Formation of virosomes from influenza subunits and liposomes. Lancet 306(7941):899–901CrossRefGoogle Scholar
  4. 4.
    Arunothayanun P, Uchegbu IF, Craig DQM, Turton JA, Florence AT (1999) In vitro/in vivo characterisation of polyhedral niosomes. Int J Pharm 183(1):57–61PubMedCrossRefGoogle Scholar
  5. 5.
    Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghe G, Whittaker JS (1985) The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 37(4):237–242PubMedCrossRefGoogle Scholar
  6. 6.
    Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A (1985) The preparation and properties of niosomes—non-ionic surfactant vesicles. J Pharm Pharmacol 37(12):863–868PubMedCrossRefGoogle Scholar
  7. 7.
    Bangham AD, Horne RW (1964) Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 8(5):660-668Google Scholar
  8. 8.
    Barakat HS, Darwish IA, El-Khordagui LK, Khalafallah NM (2009) Development of naftifine hydrochloride alcohol-free niosome gel. Drug Dev Ind Pharm 35(5):631–637PubMedCrossRefGoogle Scholar
  9. 9.
    Barenholzt Y, Amselem S, Lichtenberg D (1979) A new method for preparation of phospholipid vesicles (liposomes)—French press. FEBS Lett 99(1):210–214PubMedCrossRefGoogle Scholar
  10. 10.
    Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 298(4):1015–1019PubMedCrossRefGoogle Scholar
  11. 11.
    Bayindir ZS, Yuksel N (2010) Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 99(4):2049–2060PubMedGoogle Scholar
  12. 12.
    Bennett E, Mullen AB, Ferro VA (2009) Translational modifications to improve vaccine efficacy in an oral influenza vaccine. Methods 49(4):322–327PubMedCrossRefGoogle Scholar
  13. 13.
    Bibi S, Kaur R, Henriksen-Lacey M, McNeil SE, Wilkhu J, Lattmann E, Christensen D, Mohammed AR, Perrie Y (2011) Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm 417(1–2):138–150PubMedCrossRefGoogle Scholar
  14. 14.
    Biswal S, Murthy PN, Sahu J, Sahoo P, Amir F (2008) Vesicles of non-ionic surfactants (niosomes) and drug delivery potential. Int J Pharm Sci Nanotechnol 1(1):1–8Google Scholar
  15. 15.
    Bramwell VW, Perrie Y (2005) The rational design of vaccines. Drug Discov Today 10(22):1527–1534PubMedCrossRefGoogle Scholar
  16. 16.
    Brewer JM, Alexander J (1992) The adjuvant activity of non-ionic surfactant vesicles (niosomes) on the BALB/c humoral response to bovine serum albumin. Immunology 75(4):570–575PubMedGoogle Scholar
  17. 17.
    Brewer JM, Alexander J (1994) Studies on the adjuvant activity of non-ionic surfactant vesicles: adjuvant-driven IgG2a production independent of MHC control. Vaccine 12(7):613–619PubMedCrossRefGoogle Scholar
  18. 18.
    Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J (1996) In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol 26(9):2062–2066PubMedCrossRefGoogle Scholar
  19. 19.
    Brewer JM, Roberts CW, Stimson WH, Alexander J (1995) Accurate determination of adjuvant-associated protein or peptide by ninhydrin assay. Vaccine 13(15):1441–1444PubMedCrossRefGoogle Scholar
  20. 20.
    Carafa M, Santucci E, Alhaique F, Coviello T, Murtas E, Riccieri FM, Lucania G, Torrisi MR (1998) Preparation and properties of new unilamellar non-ionic/ionic surfactant vesicles. Int J Pharm 160(1):51–59CrossRefGoogle Scholar
  21. 21.
    Chambers MA, Wright DC, Brisker J, Williams A, Hatch G, Gavier-Widen D, Hall G, Marsh PD, Glyn Hewinson R (2004) A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome) protects guinea pigs from lethal tuberculosis. Vaccine 22(8):1063–1071PubMedCrossRefGoogle Scholar
  22. 22.
    Conacher M, Alexander J, Brewer JM (2001) Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19(20–22):2965–2974PubMedCrossRefGoogle Scholar
  23. 23.
    Corr SC, Gahan CCGM, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52(1):2–12PubMedCrossRefGoogle Scholar
  24. 24.
    Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y, Agger EM, Andersen P (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)—a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718(1–2):22–31PubMedGoogle Scholar
  25. 25.
    Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 443(3):629–634PubMedGoogle Scholar
  26. 26.
    Desjardins R, Krzystyniak K, Thérien H-M, Banska W, Tancrede P, Fournier M (1995) Immunoactivating potential of multilamellar liposome vesicles (MLV) in murine popliteal lymph node (PLN) test. Int J Immunopharmacol 17(5):367–374PubMedCrossRefGoogle Scholar
  27. 27.
    Devaraj GN, Parakh SR, Devraj R, Apte SS, Rao BR, Rambhau D (2002) Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J Colloid Interface Sci 251(2):360–365PubMedCrossRefGoogle Scholar
  28. 28.
    Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the peyer’s patches. J Control Release 11(1–3):205–214CrossRefGoogle Scholar
  29. 29.
    Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417PubMedCrossRefGoogle Scholar
  30. 30.
    Freitas C, Müller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 168(2):221–229CrossRefGoogle Scholar
  31. 31.
    González-Rodríguez M, Rabasco A (2011) Charged liposomes as carriers to enhance the permeation through the skin. Expert Opin Drug Deliv 8(7):857–871PubMedCrossRefGoogle Scholar
  32. 32.
    Gregoriadis G (1990) Immunological adjuvants: a role for liposomes. Immunology Today 11:89–97PubMedCrossRefGoogle Scholar
  33. 33.
    Gregoriadis G, Leathwood PD, et al (1971) Enzyme entrapment in liposomes. FEBS Letters 14(2):95–99PubMedCrossRefGoogle Scholar
  34. 34.
    Guinedi AS, Mortada ND, Mansour S, Hathout RM (2005) Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm 306(1–2):71–82PubMedCrossRefGoogle Scholar
  35. 35.
    Gupta PN, Mishra V, Rawat A, Dubey P, Mahor S, Jain S, Chatterji DP, Vyas SP (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293(1–2):73–82PubMedCrossRefGoogle Scholar
  36. 36.
    Handjani-Vila RM, Ribier A, Rondot B, Vanlerberghie G (1979) Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1(5):303–314PubMedCrossRefGoogle Scholar
  37. 37.
    Hong M, Zhu S, Jiang Y, Tang G, Pei Y (2009) Efficient tumor targeting of hydroxycamptothecin loaded PEGylated niosomes modified with transferrin. J Control Release 133(2):96–102PubMedCrossRefGoogle Scholar
  38. 38.
    Hood E, Gonzalez M, Plaas A, Strom J, VanAuker M (2007) Immuno-targeting of nonionic surfactant vesicles to inflammation. Int J Pharm 339(1–2):222–230PubMedCrossRefGoogle Scholar
  39. 39.
    Huang Y-Z, Gao J-Q, Chen J-L, Liang W-Q (2006) Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer. Colloids Surf B Biointerfaces 49(2):158–164PubMedCrossRefGoogle Scholar
  40. 40.
    Israelachvili JN, Mitchell DJ (1975) A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta 389(1):13–19PubMedCrossRefGoogle Scholar
  41. 41.
    Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470(2):185–201PubMedCrossRefGoogle Scholar
  42. 42.
    Jadon P, Gajbhiye V, Jadon R, Gajbhiye K, Ganesh N (2009) Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech 10(4):1186–1192PubMedCrossRefGoogle Scholar
  43. 43.
    Jain S, Singh P, Mishra V, Vyas SP (2005) Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against Hepatitis B. Immunol Lett 101(1):41–49PubMedCrossRefGoogle Scholar
  44. 44.
    Kensil CR (1996) Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 13(1–2):1–55PubMedGoogle Scholar
  45. 45.
    Kirby C, Gregoriadis G (1984) Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Nat Biotechnol 2(11):979–984CrossRefGoogle Scholar
  46. 46.
    Konnings S, Copland MJ, Davies NM, Rades T (2002) A method for the incorporation of ovalbumin into immune stimulating complexes prepared by the hydration method. Int J Pharm 241(2):385–389PubMedCrossRefGoogle Scholar
  47. 47.
    Kruger NJ (2002) The Bradford method for protein quantitation. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, pp 15–21CrossRefGoogle Scholar
  48. 48.
    Kumar VV (1991) Complementary molecular shapes and additivity of the packing parameter of lipids. Proc Natl Acad Sci U S A 88(2):444–448PubMedCrossRefGoogle Scholar
  49. 49.
    Lasic DD (1990) On the thermodynamic stability of liposomes. J Colloid Interface Sci 140(1):302–304CrossRefGoogle Scholar
  50. 50.
    Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070(1):187–192PubMedCrossRefGoogle Scholar
  51. 51.
    Lendemans DG, Egert AM, Hook S, Rades T (2007) Cage-like complexes formed by DOTAP, Quil-A and cholesterol. Int J Pharm 332(1–2):192–195PubMedCrossRefGoogle Scholar
  52. 52.
    Lendemans DG, Myschik J, Hook S, Rades T (2005) Cationic cage-like complexes formed by DC-cholesterol, Quil-A, and phospholipid. J Pharm Sci 94(8):1794–1807PubMedCrossRefGoogle Scholar
  53. 53.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  54. 54.
    Mann JFS, Ferro VA, Mullen AB, Tetley L, Mullen M, Carter KC, Alexander J, Stimson WH (2004) Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22(19):2425–2429PubMedCrossRefGoogle Scholar
  55. 55.
    Mann JFS, Scales HE, Shakir E, Alexander J, Carter KC, Mullen AB, Ferro VA (2006) Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38(2):90–95PubMedCrossRefGoogle Scholar
  56. 56.
    Mann JFS, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA (2009) Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 27(27):3643–3649PubMedCrossRefGoogle Scholar
  57. 57.
    Manosroi A, Khanrin P, Lohcharoenkal W, Werner RG, Götz F, Manosroi W, Manosroi J (2010) Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. Int J Pharm 392(1–2):304–310PubMedCrossRefGoogle Scholar
  58. 58.
    Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, Abe M (2003) Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B Biointerfaces 30(1–2):129–138CrossRefGoogle Scholar
  59. 59.
    Moghaddam B, Ali MH, Wilkhu J, Kirby DJ, Mohammed AR, Zheng Q, Perrie Y (2011) The application of monolayer studies in the understanding of liposomal formulations. Int J Pharm 417(1–2):235–244PubMedCrossRefGoogle Scholar
  60. 60.
    Mohammed AR, Bramwell VW, Coombes AGA, Perrie Y (2006) Lyophilisation and sterilisation of liposomal vaccines to produce stable and sterile products. Methods 40(1):30–38PubMedCrossRefGoogle Scholar
  61. 61.
    Mohammed AR, Bramwell VW, Kirby DJ, McNeil SE, Perrie Y (2010) Increased potential of a cationic liposome-based delivery system: enhancing stability and sustained immunological activity in pre-clinical development. Eur J Pharm Biopharm 76(3):404–412PubMedCrossRefGoogle Scholar
  62. 62.
    Mokhtar M, Sammour OA, Hammad MA, Megrab NA (2008) Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm 361(1–2):104–111PubMedCrossRefGoogle Scholar
  63. 63.
    Mowat MA (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nature 3:331–341Google Scholar
  64. 64.
    Murdan S, Gregoriadis G, Florence AT (1999) Sorbitan monostearate/polysorbate 20 organogels containing niosomes: a delivery vehicle for antigens? Eur J Pharm Sci 8(3):177–185PubMedCrossRefGoogle Scholar
  65. 65.
    New R (1990) Liposomes a practical approach. Oxford University Press, New York, pp 1–32Google Scholar
  66. 66.
    Ning M, Guo Y, Pan H, Yu H, Gu Z (2005) Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv 12(6):399–407PubMedCrossRefGoogle Scholar
  67. 67.
    Norris DA, Puri N, Sinko PJ (1998) The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 34(2–3):135–154PubMedCrossRefGoogle Scholar
  68. 68.
    Obrenovic MM, Perrie Y, Gregoriadis G (1998) Entrapment of plasmid DNA into niosomes: characterization studies. J Pharm Pharmacol 50(S9):155CrossRefGoogle Scholar
  69. 69.
    Okada JI, Cohen S, Langer R (1995) In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm Res 12(4):576–582PubMedCrossRefGoogle Scholar
  70. 70.
    Papahadjopoulos D, Vail WJ, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394(3):483–491PubMedCrossRefGoogle Scholar
  71. 71.
    Perrie Y, Barralet JE, McNeil S, Vangala A (2004) Surfactant vesicle-mediated delivery of DNA vaccines via the subcutaneous route. Int J Pharm 284(1–2):31–41PubMedCrossRefGoogle Scholar
  72. 72.
    Perrie Y, Obrenovic M, McCarthy D, Gregoriadis G (2002) Liposome (Lipodine™)-mediated DNA vaccination by the oral route. J Liposome Res 12(1–2):185–197PubMedCrossRefGoogle Scholar
  73. 73.
    Perrie Y, Rades T (2012) FASTtrack: pharmaceutics—drug delivery and targeting. 2nd edn. Pharmaceutical Press, LondonGoogle Scholar
  74. 74.
    Rentel CO, Bouwstra JA, Naisbett B, Junginger HE (1999) Niosomes as a novel peroral vaccine delivery system. Int J Pharm 186(2):161–167PubMedCrossRefGoogle Scholar
  75. 75.
    Sasaki S, Takeshita F, Xin K-Q, Ishii N, Okuda K (2003) Adjuvant formulations and delivery systems for DNA vaccines. Methods 31(3):243–254PubMedCrossRefGoogle Scholar
  76. 76.
    Schubert R, Jaroni H, Schoelmerich J, Schmidt KH (1983) Studies on the mechanism of bile salt-induced liposomal membrane damage. Digestion 28(3):181–190PubMedCrossRefGoogle Scholar
  77. 77.
    Shakweh M, Besnard M, Nicolas V, Fattal E (2005) Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by peyer’s patches in mice. Eur J Pharm Biopharm 61:1–13PubMedCrossRefGoogle Scholar
  78. 78.
    Shukla A, Katare OP, Singh B, Vyas SP (2010) M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int J Pharm 385(1–2):47–52PubMedCrossRefGoogle Scholar
  79. 79.
    Srinivas S, Kumar YA, Hemanth A, Anitha M (2010) Preparation and evaluation of niosomes containing aceclofenac. Digest J Nanomater Biostruct 5(1):249–254Google Scholar
  80. 80.
    Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A 75(9):4194–4198PubMedCrossRefGoogle Scholar
  81. 81.
    Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9(1):467–508PubMedCrossRefGoogle Scholar
  82. 82.
    Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9(4):356–362PubMedCrossRefGoogle Scholar
  83. 83.
    Taylor KMG, Morris RM (1995) Thermal analysis of phase transition behaviour in liposomes. Thermochim Acta 248:289–301CrossRefGoogle Scholar
  84. 84.
    Uchegbu IF, Double JA, Turton JA, Florence AT (1995) Distribution, metabolism and tumoricidal activity of doxorubicin administered in sorbitan monostearate (Span 60) niosomes in the mouse. Pharm Res 12(7):1019–1024PubMedCrossRefGoogle Scholar
  85. 85.
    Uchegbu IF, Duncan R (1997) Niosomes containing N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin (PK1): effect of method of preparation and choice of surfactant on niosome characteristics and a preliminary study of body distribution. Int J Pharm 155(1):7–17CrossRefGoogle Scholar
  86. 86.
    Uchegbu IF, Florence AT (1995) Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci 58(1):1–55CrossRefGoogle Scholar
  87. 87.
    Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70CrossRefGoogle Scholar
  88. 88.
    van Hal DA, Bouwstra JA, van Rensen A, Jeremiasse E, de Vringer T, Junginger HE (1996) Preparation and characterization of nonionic surfactant vesicles. J Colloid Interface Sci 178(1):263–273CrossRefGoogle Scholar
  89. 89.
    Vangala A, Bramwell VW, McNeil S, Christensen D, Agger EM, Perrie Y (2007) Comparison of vesicle based antigen delivery systems for delivery of hepatitis B surface antigen. J Control Release 119(1):102–110PubMedCrossRefGoogle Scholar
  90. 90.
    Vangala A, Kirby D, Rosenkrands I, Agger EM, Andersen P, Perrie Y (2006) A comparative study of cationic liposome and niosome-based adjuvant systems for protein subunit vaccines: characterisation, environmental scanning electron microscopy and immunisation studies in mice. J Pharm Pharmacol 58(6):787–799PubMedCrossRefGoogle Scholar
  91. 91.
    Vyas SP, Singh RP, Jain S, Mishra V, Mahor S, Singh P, Gupta PN, Rawat A, Dubey P (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 296(1–2):80–86PubMedCrossRefGoogle Scholar
  92. 92.
    Wacker M, Schubert R (1998) From mixed micelles to liposomes: critical steps during detergent removal by membrane dialysis. Int J Pharm 162(1–2):171–175CrossRefGoogle Scholar
  93. 93.
    Walker W, Brewer JM, Alexander J (1996) Lipid vesicle-entrapped influenza A antigen modulates the influenza A-specific human antibody response in immune reconstituted SCID-human mice. Eur J Immunol 26(7):1664–1667PubMedCrossRefGoogle Scholar
  94. 94.
    Yoshida H, Lehr CM, Kok W, Junginger HE, Verhoef JC, Bouwstra JA (1992) Niosomes for oral delivery of peptide drugs. J Control Release 21(1–3):145–153CrossRefGoogle Scholar
  95. 95.
    Yoshioka T, Sternberg B, Florence AT (1994) Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm 105(1):1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jitinder Wilkhu
    • 1
  • Anil Vangala
    • 2
  • Afzal R. Mohammed
    • 1
  • Yvonne Perrie
    • 1
  1. 1.School of Life and Health SciencesAston UniversityBirminghamUK
  2. 2.School of Pharmacy and ChemistryKingston UniversityLondonUK

Personalised recommendations