Comparing Earth and Venus

Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 11)

Abstract

For obvious reasons the atmosphere of Venus has received much less attention in the natural sciences than the atmosphere of Earth. The same is true for numerical modeling efforts concerning the two atmospheres. The circulation of Venus’ atmosphere can be described by the same set of basic equations valid for the other planetary atmospheres: the Navier-Stokes equations describing the temporal evolution of momentum plus equations of continuity and the conservation of thermodynamic energy (see Chap. 5). These equations are discretized in the so-called dynamical cores of numerical models, and it is not surprising that Venus models, in general, use dynamical cores originally built for Earth modeling (see Chap. 6). Parameterizations needed in complex planetary models to describe subgrid-scale processes are more difficult to exchange because parameters may differ considerably among planets. Nevertheless, many parameterizations used in Venus models are based on developments made for other planets.

Keywords

Vortex Ozone Titan Sulfuric Acid Vorticity 

References

  1. D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academy, Orlando, Florida, 1987)Google Scholar
  2. M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001)ADSCrossRefGoogle Scholar
  3. A.J. Charlton, L.M. Polvani, A new look at stratospheric sudden warmings. part I: Climatology and modeling benchmarks. J. Climate 20, 449–469 (2007)Google Scholar
  4. A.J. Charlton, L.M. Polvani, J. Perlwitz, F. Sassi, E. Manzini, K. Shibata, S. Pawson, J.E. Nielsen, D. Rind, A new look at stratospheric sudden warmings. part II: Evaluation of numerical model simulations. J. Climate 20, 470–488 (2007)Google Scholar
  5. L.S. Elson, Wave instability in the polar-region of Venus. J. Atmos. Sci. 39, 2356–2362 (1982)ADSCrossRefGoogle Scholar
  6. B. Funke, M. Lopez-Puertas, D. Bermejo-Pantaleon, M. Garcia-Comas, G.P. Stiller, T. von Clarmann, M. Kiefer, A. Linden, Evidence for dynamical coupling from the lower atmosphere to the thermosphere during a major stratospheric warming. Geophys. Res. Lett. 37, L13803 (2010)ADSCrossRefGoogle Scholar
  7. M.A. Giorgetta, E. Manzini, E. Roeckner, M. Esch, L. Bengtsson, Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate 19, 3882–3901 (2006)ADSCrossRefGoogle Scholar
  8. K. Hamilton, Dynamics of the tropical middle atmosphere: A tutorial review. Atmos.-Ocean 36, 319–354 (1998)CrossRefGoogle Scholar
  9. J.R. Holton, Introduction to Dynamic Meteorology, 4th edn. (Academic, New York, 2004)Google Scholar
  10. J.R. Holton, R.S. Lindzen, Updated theory for quasi-biennial cycle of tropical stratosphere. J. Atmos. Sci. 29, 1076–1080 (1972)ADSCrossRefGoogle Scholar
  11. K. Ikeda, M. Yamamoto, M. Takahashi, Superrotation of the Venus atmosphere simulated by an atmospheric general circulation model. IUGG/IAMAS Meeting, Perugia, Italy (2007)Google Scholar
  12. Y. Kawatani, M. Takahashi, K. Sato, S.P. Alexander, T. Tsuda, Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation. J. Geophys. Res.-Atmos. 114, D01102 (2009)ADSCrossRefGoogle Scholar
  13. G.K. Labitzke, H. van Loon, The Stratosphere: Phenomena, History, and Relevance (Springer, Berlin, 1999)Google Scholar
  14. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res.-Planets 115, 6006 (2010), doi:10.1029/2009JE003458CrossRefGoogle Scholar
  15. R.S. Lieberman, D.A. Ortland, D.M. Riggin, Q. Wu, C. Jacobi, Momentum budget of the migrating diurnal tide in the mesosphere and lower thermosphere. J. Geophys. Res.-Atmos. 116, D07110 (2011)ADSCrossRefGoogle Scholar
  16. S.S. Limaye, J.P. Kossin, C. Rozoff, G. Piccioni, D.V. Titov, W.J. Markiewicz, Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04204 (2009), doi:10.1029/2008GL036093CrossRefGoogle Scholar
  17. R.S. Lindzen, J.R. Holton, A theory of Quasi-Biennial Oscillation. J. Atmos. Sci. 25, p. 1095–1107 (1968)ADSCrossRefGoogle Scholar
  18. T. Matsuno, Dynamical model of stratospheric sudden warming. J. Atmos. Sci. 28, 1479–1494 (1971)ADSCrossRefGoogle Scholar
  19. F. Montmessin, Clouds of Venus: comparison with other terrestrial planets. In VEXAG2010 workshop abstract, Madison, WI, USA (2010)Google Scholar
  20. C. Pena-Ortiz, H. Schmidt, M.A. Giorgetta, M. Keller, QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA. J. Geophys. Res.-Atmos. 115, D21106 (2010)ADSCrossRefGoogle Scholar
  21. G. Piccioni, P. Drossart, A. Sanchez-Lavega, R. Hueso, F.W. Taylor, C.F. Wilson, D. Grassi, L. Zasova, M. Moriconi, A. Adriani, S. Lebonnois, A. Coradini, B. Bezard, F. Angrilli, G. Arnold, K.H. Baines, G. Bellucci, J. Benkhoff, J.P. Bibring, A. Blanco, M.I. Blecka, R.W. Carlson, A. Di Lellis, T. Encrenaz, S. Erard, S. Fonti, V. Formisano, T. Fouchet, R. Garcia, R. Haus, J. Helbert, N.I. Ignatiev, P.G.J. Irwin, Y. Langevin, M.A. Lopez-Valverde, D. Luz, L. Marinangeli, V. Orofino, A.V. Rodin, M.C. Roos-Serote, B. Saggin, D.M. Stam, D. Titov, G. Visconti, M. Zambelli, South-polar features on venus similar to those near the North Pole. Nature 450, 637–640 (2007)ADSCrossRefGoogle Scholar
  22. R.J. Reed, L.A. Rasmussen, W.J. Campbell, D.G. Rogers, Evidence of a downward-propagating,annual wind reversal in equatorial stratosphere. J. Geophys. Res. 66, 813–818 (1961)ADSCrossRefGoogle Scholar
  23. J.H. Richter, F. Sassi, R.R. Garcia, Toward a physically based gravity wave source parameterization in a General Circulation Model. J. Atmos. Sci. 67, 136–156 (2010)ADSCrossRefGoogle Scholar
  24. F.A.R Russell, Spread of the phenomena round the world. The Eruption of Krakatoa and Subsequent Phenomena (Trübner & co, London, 1888)Google Scholar
  25. A.A. Scaife, N. Butchart, C.D. Warner, D. Stainforth, W. Norton, J. Austin, Realistic quasi-biennial oscillations in a simulation of the global climate. Geophys. Res. Lett. 27, 3481–3484 (2000)ADSCrossRefGoogle Scholar
  26. H. Schmidt, G.P. Brasseur, M. Charron, E. Manzini, M.A. Giorgetta, T. Diehl, V.I. Fomichev, D. Kinnison, D. Marsh, S. Walters, The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate 19, 3903–3931 (2006)ADSCrossRefGoogle Scholar
  27. W.H. Schubert, M.T. Montgomery, R.K. Taft, T.A. Guinn, S.R. Fulton, J.P. Kossin, J.P. Edwards, Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci. 56, 1197–1223 (1999)ADSCrossRefGoogle Scholar
  28. A. Simmons, M. Hortal, G. Kelly, A. McNally, A. Untch, S. Uppala, ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci. 62, 668–689 (2005)ADSCrossRefGoogle Scholar
  29. I.-S. Song, H.-Y. Chun, A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci. 65, 1204–1224 (2008)ADSCrossRefGoogle Scholar
  30. M. Takahashi, Simulation of the quasi-biennial oscillation in a general circulation model. Geophys. Res. Lett. 26, 1307–1310 (1999)ADSCrossRefGoogle Scholar
  31. T.T Tsuda, S. Nozawa, S. Oyama, T. Motoba, Y. Ogawa, H. Shinagawa, N. Nishitani, K. Hosokawa, N. Sato, M. Lester, R. Fujii, Acceleration mechanism of high-speed neutral wind observed in the polar lower thermosphere. J. Geophys. Res.-Space Phys. 114, A04322 (2009)Google Scholar
  32. J.M. Wallace, J.R. Holton, A diagnostic numerical model of the Quasi-Biennial Oscillation. J. Atmos. Sci. 25, 280–292 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations