Advertisement

Models of Venus Atmosphere

  • Sebastien LebonnoisEmail author
  • Christopher Lee
  • Masaru Yamamoto
  • Jonathan Dawson
  • Stephen R. Lewis
  • Joao Mendonca
  • Peter Read
  • Helen F. Parish
  • Gerald Schubert
  • Lennart Bengtsson
  • David Grinspoon
  • Sanjay S. Limaye
  • Hauke Schmidt
  • Håkan Svedhem
  • Dimitri V. Titov
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 11)

Abstract

In the context of an International Space Science Institute (ISSI) working group, we have conducted a project to compare the most recent General Circulation Models (GCMs) of the Venus atmospheric circulation. A common configuration has been decided, with simple physical parametrization for the solar forcing and the boundary layer scheme.

Keywords

Zonal Wind Total Angular Momentum Dynamical Core Baseline Simulation Boundary Layer Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

SL would like to thank the Centre National d’Etudes Spatiales (CNES), the project Exoclimats financed by the Agence Nationale de la Recherche (ANR), and the computation facilities of both the Institut du Dévelopement et des Ressources en Informatique Scientifique (IDRIS) and the University Pierre and Marie Curie (UPMC). The LR10 simulations were performed on Caltech’s Division of Geological & Planetary Sciences Dell cluster, CITerra, funded by a grant from NASA under the Planetary Atmospheres program. MY conducted the numerical experiments at the Information Technology Center of the University of Tokyo and the Information Initiative Center of Hokkaido University, which were supported by Grant-in-Aid for Scientific Research (KAKENHI No. 20740273 and 22244060). HFP and GS acknowledge support from NASA’s Planetary Atmospheres Program through Grant NASA NNX07AF27G.

References

  1. A.D. Del Genio, W. Zhou, Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus 120, 332–343 (1996), doi:10.1006/icar.1996.0054ADSCrossRefGoogle Scholar
  2. A.D. Del Genio, W. Zhou, T.P. Eichler, Equatorial superrotation in a slowly rotating GCM - implications for Titan and Venus. Icarus 101, 1–17 (1993), doi:10.1006/icar.1993.1001ADSCrossRefGoogle Scholar
  3. T.E. Dowling, M.E. Bradley, E. Colon, J. Kramer, R.P. LeBeau, G.C.H. Lee, T.I. Mattox, R. Morales-Juberias, C.J. Palotai, V.K. Parimi, A.P. Showman, The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus 182, 259–273 (2006)ADSCrossRefGoogle Scholar
  4. A. Herrnstein, T.E. Dowling, Effects of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res.-Planets 112, 4 (2007), doi:10.1029/2006JE002804CrossRefGoogle Scholar
  5. J.L. Hollingsworth, R.E. Young, G. Schubert, C. Covey, A.S. Grossman, A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation. Geophys. Res. Lett. 34, 5202 (2007), doi:10.1029/2006GL028567CrossRefGoogle Scholar
  6. F. Hourdin, F. Couvreux, L. Menut, Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci. 59, 1105–1123 (2002)ADSCrossRefGoogle Scholar
  7. A. Kido, Y. Wakata, Multiple equilibrium states appearing in a Venus-like atmospheric general circulation model. J. Meteorol. Soc. Japan 86, 969–979 (2008)CrossRefGoogle Scholar
  8. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res.-Planets 115, 6006 (2010), doi:10.1029/2009JE003458CrossRefGoogle Scholar
  9. C. Lee, Modelling of the atmosphere of Venus, Ph.D. thesis, University of Oxford (2006)Google Scholar
  10. C. Lee, M.I. Richardson, A general circulation model ensemble study of the atmospheric circulation of venus. J. Geophys. Res. Planets 115, E04002 (2010), doi:10.1029/2009JE003490ADSCrossRefGoogle Scholar
  11. C. Lee, S.R. Lewis, P.L. Read, A numerical model of the atmosphere of Venus. Adv. Space Res. 36, 2142–2145 (2005), doi:10.1016/j.asr.2005.03.120ADSCrossRefGoogle Scholar
  12. C. Lee, S.R. Lewis, P.L. Read, Super-rotation in a venus general circulation model. J. Geophys. Res. Planets 112, L04204 (2007), doi:10.1029/2006JE002874Google Scholar
  13. G.L. Mellor, T. Yamada, Development of a turbulent closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875 (1982)ADSCrossRefGoogle Scholar
  14. A.S. Monin, A.M. Obukhov, Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Geophys. Inst. Akad. Nuak. 151, 1963–1987 (1954)Google Scholar
  15. M. Newman, C.B. Leovy, Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides. Science 257, 647–650 (1992)ADSCrossRefGoogle Scholar
  16. H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a Venus General Circulation Model. Icarus, 212, 1, 42–65, doi:10.1016/j.icarus.2011.11.015, 2011 accepted (2011)Google Scholar
  17. P. Read, Super-rotation and diffusion of axial angular momentum : II. a review of quasi-axisymmetric models of planetary atmospheres. Quater. J. R. Met. Soc. 112, 253–272 (1986)Google Scholar
  18. A. Sanchez-Lavega, R. Hueso, G. Piccioni, P. Drossart, J. Peralta, S. Perez-Hoyos, C.F. Wilson, F.W. Taylor, K.H. Baines, D. Luz, S. Erard, S. Lebonnois, Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett. 35, L13204 (2008)ADSCrossRefGoogle Scholar
  19. A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S. Limaye, H.E. Revercomb, L.A. Sromovsky, V.V. Kerzahanovich, V.I. Moroz, M.Y. Marov, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5(11), 3–58 (1985)ADSCrossRefGoogle Scholar
  20. M. Takagi, Y. Matsuda, Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res.-Atmos. 112, 9112 (2007), doi:10.1029/2006JD007901CrossRefGoogle Scholar
  21. M. Yamamoto, M. Takahashi, The fully developed superrotation simulated by a General Circulation Model of a Venus-like atmosphere. J. Atmos. Sci. 60, 561–574 (2003a), doi:10.1175/1520-0469(2003)060ADSCrossRefGoogle Scholar
  22. M. Yamamoto, M. Takahashi, Superrotation and equatorial waves in a T21 Venus-like AGCM. Geophys. Res. Lett. 30, 090 000–1 (2003b), doi:10.1029/2003GL016924Google Scholar
  23. M. Yamamoto, M. Takahashi, Dynamics of Venus’ superrotation: The eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett. 31, 9701 (2004), doi:10.1029/2004GL019518CrossRefGoogle Scholar
  24. M. Yamamoto, M. Takahashi, Superrotation maintained by meridional circulation and waves in a Venus-like AGCM. J. Atmos. Sci. 63, 3296–3314 (2006), doi:10.1175/JAS3859.1ADSCrossRefGoogle Scholar
  25. M. Yamamoto, M. Takahashi, Dynamical effects of solar heating below the cloud layer in a Venus-like atmosphere. J. Geophys. Res. 114, E12004 (2009), doi:10.1029/2009JE003381ADSCrossRefGoogle Scholar
  26. R.E. Young, J.B. Pollack, A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34, 1315–1351 (1977), doi:10.1175/1520-0469(1977)034ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sebastien Lebonnois
    • 1
    Email author
  • Christopher Lee
    • 2
  • Masaru Yamamoto
    • 3
  • Jonathan Dawson
    • 4
  • Stephen R. Lewis
    • 5
  • Joao Mendonca
    • 6
  • Peter Read
    • 7
  • Helen F. Parish
    • 8
  • Gerald Schubert
    • 8
  • Lennart Bengtsson
    • 9
  • David Grinspoon
    • 10
  • Sanjay S. Limaye
    • 11
  • Hauke Schmidt
    • 12
  • Håkan Svedhem
    • 13
  • Dimitri V. Titov
    • 14
  1. 1.Laboratoire de Meteorologie DynamiqueCNRSParisFrance
  2. 2.Ashima ResearchPasadenaUSA
  3. 3.Institute for Applied MechanicsKyushu UniversityKasugaJapan
  4. 4.Department of Physics and AstronomyThe Open UniversityMilton KeynesUK
  5. 5.Planetary and Space Science InstituteOpen UniversityMilton KeynesUK
  6. 6.Department of PhysicsOxford University, Clarendon LaboratoryOxfordUK
  7. 7.Atmospheric, Oceanic and Planetary PhysicsUniversity of Oxford, Clarendon LaboratoryOxfordUK
  8. 8.Department of Earth and Space SciencesUniversity of California Los AngelesLos AngelesUSA
  9. 9.International Space Science Institute (ISSI)BernSwitzerland
  10. 10.Department of Space ScienceDenver Museum of Nature and ScienceDenverUSA
  11. 11.Space Science Engineering CenterUniversity of WisconsinMadisonUSA
  12. 12.Atmosphaere im Erdsystem, Max-Planck-Institut fr MeteorologieHamburgGermany
  13. 13.ESA/ESTECNoordwijkThe Netherlands
  14. 14.ESTEC/ESANoordwijkThe Netherlands

Personalised recommendations