Modeling Efforts

  • Stephen R. LewisEmail author
  • Jonathan Dawson
  • Sebastien Lebonnois
  • Masaru Yamamoto
Part of the ISSI Scientific Report Series book series (ISSI, volume 11)


In this section we survey the historical development of Venus models and the range of models now available, before discussing some of their remaining limitations.


Zonal Wind Meridional Circulation Hadley Cell Geophysical Fluid Dynamics Laboratory Dynamical Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. R.K. Achterberg, B.J. Conrath, P.J. Gierasch, F.M. Flasar, C.A. Nixon, Observation of a tilt of Titan’s middle-atmospheric superrotation. Icarus 197, 549–555 (2008)ADSCrossRefGoogle Scholar
  2. A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. part I. J. Comput. Phys. 1, 119 (1966). doi:10.1016/0021-9991(66)90015-5Google Scholar
  3. A. Crespin, S. Lebonnois, F. Hourdin, V. Eymet, R. Fournier, F. Forget, Simulations of the Dynamics of Venus’ Atmosphere with the LMD Venus General Circulation Model, vol. 38 (Bulletin of the American Astronomical Society, 2006), p. 515Google Scholar
  4. A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)ADSCrossRefGoogle Scholar
  5. A.D. Del Genio, W. Zhou, Simulations of superrotation on slowly rotating planets: Sensitivity to rotation and initial condition. Icarus 120, 332–343 (1996). doi:10.1006/ icar.1996.0054ADSCrossRefGoogle Scholar
  6. A.D. Del Genio, W. Zhou, T.P. Eichler, Equatorial superrotation in a slowly rotating GCM—implications for Titan and Venus. Icarus 101, 1–17 (1993). doi:10.1006/icar. 1993.1001ADSCrossRefGoogle Scholar
  7. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999). doi:10.1029/ 1999JE001025ADSCrossRefGoogle Scholar
  8. A.J. Friedson, R.A. West, E.H. Wilson, F. Oyafuso, G.S. Orton, A global climate model of Titan’s atmosphere and surface. Planet Space Sci. 57, 1931–1949 (2009). doi:10.1016/j.pss.2009.05.006ADSCrossRefGoogle Scholar
  9. P.J. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32, 1038–1044 (1975). doi:10.1175/1520-0469(1975)032ADSCrossRefGoogle Scholar
  10. R.M. Goody, A.R. Robinson, A discussion of the deep circulation of the atmosphere of Venus. Astrophys. J. 146, 339 (1966). doi:10.1086/148898ADSCrossRefGoogle Scholar
  11. A. Herrnstein, T.E. Dowling, Effects of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res.-Planets 112, 4 (2007). doi:10.1029/2006JE002804CrossRefGoogle Scholar
  12. J.L. Hollingsworth, R.E. Young, G. Schubert, C. Covey, A.S. Grossman, A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation. Geophys. Res. Lett. 34, 5202 (2007). doi:10.1029/2006GL028567CrossRefGoogle Scholar
  13. F. Hourdin, O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, C.P. McKay, Numerical simulation of the general circulation of the atmosphere of Titan.. Icarus 117, 358–374 (1995). doi:10.1006/icar.1995.1162ADSCrossRefGoogle Scholar
  14. F. Hourdin, S. Lebonnois, D. Luz, P. Rannou, Titan’s stratospheric composition driven by condensation and dynamics. J. Geophys. Res. 109, E12005 (2004). doi:10.1029/ 2004JE002282ADSCrossRefGoogle Scholar
  15. W.B. Hubbard, B. Sicardy, R. Miles, A.J. Hollis, R.W. Forrest, I.K.M. Nicolson, G. Appleby, W. Beisker, C. Bittner, H. Bode, M. Bruns, H. Denzau, M. Nezel, E. Riedel, H. Struckmann, J.E. Arlot, F. Roques, F. Sevre, W. Thuillot, M. Hoffmann, E.H. Geyer, C. Buil, F. Colas, J. Lecacheux, A. Klotz, E. Thouvenot, J.L. Vidal, E. Carreira, F. Rossi, C. Blanco, S. Cristaldi, Y. Nevo, H.J. Reitsema, N. Brosch, K. Cernis, K. Zdanavicius, L.H. Wasserman, D.M. Hunten, D. Gautier, E. Lellouch, R.V. Yelle, B. Rizk, F.M. Flasar, C.C. Porco, D. Toublanc, G. Corugedo, The occultation of 28 SGR by Titan. Astron. Astrophys. 269, 541–563 (1993)ADSGoogle Scholar
  16. K. Ikeda, M. Yamamoto, M. Takahashi, Superrotation of the Venus atmosphere simulated by an atmospheric general circulation model, in IUGG/IAMAS Meeting, Perugia, 2007Google Scholar
  17. E. Kalnay de Rivas, Further numerical calculations of the circulation of the atmosphere of Venus. J. Atmos. Sci. 32, 1017–1024 (1975). doi:10.1175/1520-0469(1975)032ADSCrossRefGoogle Scholar
  18. A. Kido, Y. Wakata, Multiple equilibrium states appearing in a Venus-like atmospheric general circulation model. J. Meteorol. Soc. Japan 86, 969–979 (2008)CrossRefGoogle Scholar
  19. A. Kido, Y. Wakata, Multiple equilibrium states appearing in a Venus-like atmospheric general circulation model with three-dimensional solar heating. Scientific Lett. Atmosphere 5, 85–88 (2009)Google Scholar
  20. S. Lebonnois, F. Hourdin, P. Rannou, The coupling of winds, aerosols and photochemistry in Titan’s atmosphere. Phil. Trans. R. Soc. A 367, 665–682 (2009). doi:10.1098/rsta. 2008.0243ADSCrossRefGoogle Scholar
  21. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res.-Planets 115, 6006 (2010). doi:10.1029/2009JE003458CrossRefGoogle Scholar
  22. C. Lee, M.I. Richardson, A general circulation model ensemble study of the atmospheric circulation of venus. J. Geophys. Res. Planets 115, E04002 (2010). doi:10.1029/ 2009JE003490ADSCrossRefGoogle Scholar
  23. C. Lee, S.R. Lewis, P.L. Read, A numerical model of the atmosphere of Venus. Adv. Space Res. 36, 2142–2145 (2005). doi:10.1016/j.asr.2005.03.120ADSCrossRefGoogle Scholar
  24. S.R. Lewis, Global models of the lower and middle atmosphere of Venus, in 5 Years of Venus Express and a Look to the Future (Royal Astronomical Society, London, 2010)Google Scholar
  25. S.R. Lewis, P.L. Read, Equatorial jets in the dusty Martian atmosphere. J. Geophys. Res.-Planets 108, 5034 (2003). doi:10.1029/2002JE001933ADSCrossRefGoogle Scholar
  26. S.R. Lewis, M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, J. Huot, A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999). doi:10.1029/1999JE001024ADSCrossRefGoogle Scholar
  27. S.R. Lewis, C. Lee, P.L. Read, A Venus atmospheric general circulation model for Venus Express, in European Planetary Science Congress, 2006, p. 457Google Scholar
  28. Y. Matsuda, Dynamics of the four-day circulation in the Venus atmosphere. J. Meteorol. Soc. Japan 58, 443–470 (1980)ADSGoogle Scholar
  29. Y. Matsuda, A further study of dynamics of the four-day circulation in the Venus atmosphere. J. Meteorol. Soc. Japan 60, 245–254 (1982)ADSGoogle Scholar
  30. H.G. Mayr, I. Harris, Quasi-axisymmetric circulation and superrotation in planetary atmospheres. Astron. Astrophys. 121, 124–136 (1983)ADSzbMATHGoogle Scholar
  31. J.M. Mendonca, P.L. Read, S.R. Lewis, New radiative transfer code in the Oxford Venus GCM, in 3rd International Conference on Venus, Aussois, 2010Google Scholar
  32. J.M. Mendonca, P.L. Read and S.R. Lewis, Zonal winds on high latitudes on Venus: An improved application of cyclostrophic balance to Venus Experss observations, Icarus, 217(2), 629–639 (2012) doi:10.1016/j.icarus.2011.07.010ADSCrossRefGoogle Scholar
  33. I.V. Mingalev, V.S. Mingalev, O.V. Mingalev, B. Kazeminejad, H. Lammer, H.K. Biernat, H. Lichtenegger, K. Schwingenschuh, H.O. Rucker, First simulation results of Titan’s atmospheric dynamics with a global 3-D non-hydrostatic circulation model. Ann. Geophys. 24, 1–15 (2006)CrossRefGoogle Scholar
  34. J.L. Mitchell, G.K. Vallis, The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. 115, E12008 (2010). doi:10.1029/2010JE003587ADSCrossRefGoogle Scholar
  35. J.L. Mitchell, R.T. Pierrehumbert, D. Frierson, R. Caballero, The dynamics behind Titan’s methane cloud. Proc. Natl. Acad. Sci. USA 103, 18 421–18 426 (2006). doi:10.1073/pnas. 0605074103Google Scholar
  36. H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a Venus General Circulation Model. Icarus, 212(1), 42–65 (2011) doi:10.1016/j.icarus.2010.11.015ADSCrossRefGoogle Scholar
  37. P. Rannou, F. Hourdin, C.P. McKay, A wind origin for Titan’s haze structure. Nature 418, 853–856 (2002)ADSCrossRefGoogle Scholar
  38. P. Rannou, F. Hourdin, C.P. McKay, D. Luz, A coupled dynamics-microphysics model of Titan’s atmosphere. Icarus 170, 443–462 (2004). doi:10.1016/j.icarus.2004.03.007ADSCrossRefGoogle Scholar
  39. M.I. Richardson, A.D. Toigo, C.E. Newman, PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001 (2007). doi:10.1029/2006JE002825ADSCrossRefGoogle Scholar
  40. W.B. Rossow, A general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 40, 273–302 (1983). doi:10.1175/1520-0469(1983)040ADSCrossRefGoogle Scholar
  41. W.B. Rossow, G.P. Williams, Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979). doi:10.1175/1520-0469(1979)036ADSCrossRefGoogle Scholar
  42. W.B. Rossow, S.B. Fels, P.H. Stone, Comments on A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 37, 250–252 (1980). doi:10.1175/ 1520-0469(1980)037ADSCrossRefGoogle Scholar
  43. P.H. Stone, The structure and circulation of the deep Venus atmosphere. J. Atmos. Sci. 31, 1681–1690 (1974). doi:10.1175/1520-0469(1974)031ADSCrossRefGoogle Scholar
  44. M.J. Suarez, D.G. Duffy, Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci. 49, 1541–1554 (1992)ADSCrossRefGoogle Scholar
  45. M. Takagi, Y. Matsuda, Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res.-Atmos 112, 9112 (2007). doi:10.1029/2006JD007901CrossRefGoogle Scholar
  46. T. Tokano, F.M. Neubauer, M. Laube, C.P. McKay, Seasonal variation of Titan’s atmospheric structure simulated by a general circulation model. Planet Space Sci. 47, 493–520 (1999)ADSCrossRefGoogle Scholar
  47. M. Yamamoto, M. Takahashi, The fully developed superrotation simulated by a General Circulation Model of a Venus-like atmosphere. J. Atmos. Sci. 60, 561–574 (2003a). doi:10.1175/1520-0469(2003)060ADSCrossRefGoogle Scholar
  48. M. Yamamoto, M. Takahashi, Superrotation and equatorial waves in a T21 Venus-like AGCM. Geophys. Res. Lett. 30, 090 000–1 (2003b). doi:10.1029/2003GL016924Google Scholar
  49. M. Yamamoto, M. Takahashi, Dynamics of Venus’ superrotation: The eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett. 31, 9701 (2004). doi:10.1029/2004GL019518CrossRefGoogle Scholar
  50. M. Yamamoto, M. Takahashi, Superrotation maintained by meridional circulation and waves in a Venus-like AGCM. J. Atmos. Sci. 63, 3296–3314 (2006). doi:10.1175/ JAS3859.1ADSCrossRefGoogle Scholar
  51. M. Yamamoto, M. Takahashi, Simulations of superrotation using a GCM for Venus’ middle atmosphere. Earth, Planets, and Space, 59, 971–979 (2007)ADSGoogle Scholar
  52. M. Yamamoto, M. Takahashi, Prograde and retrograde atmospheric rotation of cloud-covered terrestrial planets. significance of astronomical parameters in the middle atmosphere. Astron. Astrophys. 490, L11–L14 (2008)Google Scholar
  53. M. Yamamoto, M. Takahashi, Dynamical effects of solar heating below the cloud layer in a Venus-like atmosphere. J. Geophys. Res. 114, E12004 (2009). doi:10.1029/ 2009JE003381ADSCrossRefGoogle Scholar
  54. R.E. Young, J.B. Pollack, A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34, 1315–1351 (1977). doi:10.1175/1520-0469(1977)034ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stephen R. Lewis
    • 1
    Email author
  • Jonathan Dawson
    • 2
  • Sebastien Lebonnois
    • 3
  • Masaru Yamamoto
    • 4
  1. 1.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  2. 2.Department of Physics & AstronomyThe Open UniversityMilton KeynesUK
  3. 3.Laboratoire de Meteorologie DynamiqueParisFrance
  4. 4.Research Institute for Applied MechanicsKyushu UniversityFukuokaJapan

Personalised recommendations