The Dynamics and Circulation of Venus Atmosphere

  • Peter L. ReadEmail author
Part of the ISSI Scientific Report Series book series (ISSI, volume 11)


In this chapter we introduce a number of basic dynamical ideas and concepts that are useful in understanding the large-scale circulation of Venus’s atmosphere. Some of these are of interest from an historical viewpoint, having influenced thinking on this subject at an earlier time. But most are still very relevant for interpreting modern observations, measurements and for formulating and interpreting models. We begin by considering basic conservation principles that provide key constraints on the circulation and go on to investigate the main dynamical balances prevalent in the atmosphere. The chapter goes on to discuss the main eddy processes that are likely to play a significant role in maintaining Venus’s atmospheric super-rotation, including planetary waves, gravity waves and thermal tides, their likely origins and how they interact with the zonal flow. The chapter concludes with a brief discussion of how the atmosphere interacts with the underlying surface.


Gravity Wave Potential Vorticity Zonal Flow Polar Vortex Hadley Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. A.C.B. Aguiar, P.L. Read, R.D. Wordsworth, T. Salter, Y.H. Yamazaki, A laboratory model of Saturn’s North Polar hexagon. Icarus 206, 755–763 (2010)ADSCrossRefGoogle Scholar
  2. D.G. Andrews, M.E. McIntyre, Generalized eliassen-palm and charney-drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35, 175–185 (1978)ADSCrossRefGoogle Scholar
  3. D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academy, Orlando, 1987)Google Scholar
  4. N.L. Baker, C.B. Leovy, Zonal winds near Venus cloud top level – a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202–220 (1987)ADSCrossRefGoogle Scholar
  5. R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of venus. part I: No wind shear. J. Atmos. Sci. 57, 184–199 (2000a)Google Scholar
  6. R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of venus. part II: Mean wind shear and wave-mean flow interaction. J. Atmos. Sci. 57, 200–215 (2000b)Google Scholar
  7. S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips, University of Arizona Press, AZ, Tucson (1997), pp. 259–291Google Scholar
  8. S. Chapman, S. Lindzen, Atmospheric Tides (Reidel, Dordrecht, 1970)Google Scholar
  9. C.C. Counselman III, S.A. Gourevitch, R.W. King and G.B. Loriot, Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry, J. Geophys. Res, 85, 8026–8030 (1980)ADSCrossRefGoogle Scholar
  10. R.A. Craig, A solution of the nonlinear vorticity equation for atmospheric motion. J. Meteor. 2, 175–178 (1945)CrossRefMathSciNetGoogle Scholar
  11. A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)ADSCrossRefGoogle Scholar
  12. P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, UK (1981)zbMATHGoogle Scholar
  13. L.S. Elson, Wave instability in the polar-region of Venus. J. Atmos. Sci. 39, 2356–2362 (1982)ADSCrossRefGoogle Scholar
  14. S.B. Fels, R.S. Lindzen, The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, p. 149–191 (1974)ADSCrossRefGoogle Scholar
  15. W.G. Fruh, P.L. Read, Experiments on a barotropic rotating shear layer. part 1. instability and steady vortices. J. Fluid. Mech. 383, 143–173 (1999)Google Scholar
  16. B. Galperin, S. Sukoriansky, P.S. Anderson, On the critical Richardson number in stably stratified turbulence. Atmos. Sci. Lett. 8, 65–69 (2007)ADSCrossRefGoogle Scholar
  17. J.R. Garratt, The atmospheric boundary layer – review. Earth-Science Reviews 37, 89–134 (1994)ADSCrossRefGoogle Scholar
  18. P.J. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J  Atmos. Sci. 32, 1038–1044 (1975). doi:10.1175/1520-0469(1975)032ADSCrossRefGoogle Scholar
  19. P.J. Gierasch, Waves in the atmosphere of Venus. Nature 328, 510–512 (1987)ADSCrossRefGoogle Scholar
  20. P.J. Gierasch, P.H. Stone, A mechanism for Jupiter’s equatorial acceleration. J. Atmos. Sci. 25, 1169–1170 (1968)ADSCrossRefGoogle Scholar
  21. A.E. Gill, Atmosphere-Ocean Dynamics. Academic Press, New York (1982)Google Scholar
  22. D. Grassi, A. Migliorini, L. Montabone, S. Lebonnois, A. Cardesin-Moinelo, G. Piccioni, P. Drossart, L.V. Zasova, Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J. Geophys. Res.-Planets 115, E09007 (2010)ADSCrossRefGoogle Scholar
  23. B. Haurwitz, The motion of atmospheric disturbances on the spherical Earth. J. Mar. Res. 3, 254–267 (1940)Google Scholar
  24. I.M. Held, A.Y. Hou, Non-linear axially-symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980)ADSCrossRefMathSciNetGoogle Scholar
  25. R. Hide, Dynamics of the atmospheres of the major planets, with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci. 26, 841–853 (1969)ADSCrossRefGoogle Scholar
  26. R. Hide, Equatorial jets in planetary atmospheres. Nature 225, 254–255 (1970)ADSCrossRefGoogle Scholar
  27. D.P. Hinson, J.M. Jenkins, Magellan radio occultation measurements of atmospheric waves on Venus. Icarus 114, 310–327 (1995)ADSCrossRefGoogle Scholar
  28. J.R. Holton, Introduction to Dynamic Meteorology, 4th edn. (Academic, New York, 2004)Google Scholar
  29. A.Y. Hou, Axisymmetric circulations forced by heat and momentum sources – a simple-model applicable to the Venus atmosphere. J. Atmos. Sci. 41, 3437–3455 (1984)ADSCrossRefGoogle Scholar
  30. A.Y. Hou, B.F. Farrell, Superrotation induced by critical-level absorption of gravity-waves on Venus – an assessment. J. Atmos. Sci. 44, 1049–1061 (1987)ADSCrossRefGoogle Scholar
  31. A.Y. Hou, R.M. Goody, Diagnostic requirements for the superrotation on Venus. J. Atmos. Sci. 42, 413–432 (1985)ADSCrossRefGoogle Scholar
  32. L.N. Howard, P.G. Drazin, On instability of parellel flow of inviscid fluid in rotating system with variable coriolis parameter. J. Math. Phys. 43, 83–99 (1964)MathSciNetGoogle Scholar
  33. S. Iga, Y. Matsuda, Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci. 62, 2514–2527 (2005)ADSCrossRefMathSciNetGoogle Scholar
  34. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res.-Planets 115, 6006 (2010). doi:10.1029/2009JE003458CrossRefGoogle Scholar
  35. C.B. Leovy, Rotation of the upper atmosphere of Venus.. J. Atmos. Sci. 30, 1218–1220 (1973). doi:10.1175/1520-0469(1973)030ADSCrossRefGoogle Scholar
  36. S.S. Leroy, A.P. Ingersoll, Convective generation of gravity-waves in Venus’s atmosphere – gravity-wave spectrum and momentum transport. J. Atmos. Sci. 52, 3717–3737 (1995)ADSCrossRefGoogle Scholar
  37. S.S. Limaye, Venus atmospheric circulation: Known and unknown. J. Geophys. Res. 112, E04S09 (2007). doi:10.1029/2006JE002814Google Scholar
  38. S.S. Limaye, J.P. Kossin, C. Rozoff, G. Piccioni, D.V. Titov, W.J. Markiewicz, Vortex circulation on Venus: Dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04204 (2009). doi:10.1029/2008GL036093CrossRefGoogle Scholar
  39. R.S. Lindzen, Instability of plane parallel shear-flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126, 103–121 (1988)ADSCrossRefGoogle Scholar
  40. M.S. Longuet-Higgins, Eigenfunctions of laplaces tidal equations over a sphere. Phil. Trans. R. Soc. A 262, 511–607 (1968)ADSzbMATHCrossRefMathSciNetGoogle Scholar
  41. T. Matsuno, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44, 25–43 (1966)Google Scholar
  42. M.E. McIntyre, The stratospheric polar vortex and sub-vortex – fluid-dynamics and midlatitude ozone loss. Phil. Trans. R. Soc. A 352, 227–240 (1995)ADSCrossRefGoogle Scholar
  43. J.M. Mendonca, P.L. Read, C.F. Wilson, S.R. Lewis, Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations. Icarus 217, 629–639 (2012). doi:10.1016/j.icarus.2011.07.010ADSCrossRefGoogle Scholar
  44. D.V. Michelangeli, R.W. Zurek, L.S. Elson, Barotropic instability of midlatitude zonal jets on Mars, Earth And Venus. J. Atmos. Sci. 44, 2031–2041 (1987)ADSCrossRefGoogle Scholar
  45. J.L. Mitchell, G.K. Vallis, The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. 115, E12008 (2010). doi:10.1029/2010JE003587ADSCrossRefGoogle Scholar
  46. S.M. Neamtan, The motion of harmonic waves in the atmosphere. J. Meteor. 3, 53–56 (1946)CrossRefMathSciNetGoogle Scholar
  47. H. Niino, N. Misawa, An experimental and theoretical-study of barotropic instability. J. Atmos. Sci. 41, 1992–2011 (1984)ADSCrossRefGoogle Scholar
  48. J. Peralta, R. Hueso, A. Sanchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res.-Planets 113, E00B18 (2008)Google Scholar
  49. R.A. Plumb, Angular-momentum advection by axisymmetric motions. Quart. J. R. Meteor. Soc. 103, 479–485 (1977)ADSCrossRefGoogle Scholar
  50. J.B. Pollack, R. Young, Calculations of radiative and dynamical state of Venus atmosphere. J. Atmos. Sci. 32, 1025–1037 (1975)ADSCrossRefGoogle Scholar
  51. P. Read, Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Quater. J. R. Met. Soc. 112, 253–272 (1986)Google Scholar
  52. C.G. Rossby, Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semipermanent centers of action. J. Mar. Res. 2, 38–55 (1939)Google Scholar
  53. W.B. Rossow, G.P. Williams, Large-scale motion in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979). doi:10.1175/1520-0469(1979)036ADSCrossRefGoogle Scholar
  54. E.K. Schneider, Axially-symmetric steady-state models of basic state for instability and climate studies. 2. Nonlinear calculations. J. Atmos. Sci. 34, 280–296 (1977)Google Scholar
  55. P.J. Schnider, P.J. Gierasch, S.S. Leroy, M.D. Smith, Waves, advection, and cloud patterns on venus. J. Atmos. Sci. 47, 2037–2052 (1990)ADSCrossRefGoogle Scholar
  56. J.T. Schofield, F.W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Quart. J. R. Meteor. Soc. 109, 57–80 (1983)ADSCrossRefGoogle Scholar
  57. G. Schubert, R.L. Walterscheid, Propagation of small-scale acoustic gravity-waves in the Venus atmosphere. J. Atmos. Sci. 41, 1202–1213 (1984)ADSCrossRefGoogle Scholar
  58. J. Sommeria, S.D. Meyers, H.L. Swinney, Experiments on vortices and Rossby waves in eastward and westward jets, in Nonlinear Topics in Ocean Physics, ed. by A.R. Osborne (North-Holland, Amsterdam, 1991)Google Scholar
  59. V.P. Starr, The Physics of Negative Viscosity Phenomena (McGraw-Hill, New York, 1968)Google Scholar
  60. P.D. Thompson, The propagation of permanent-type waves in horizontal flow. J. Meteor. 5, 166–168 (1948)CrossRefGoogle Scholar
  61. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  62. I.C. Walton, Viscous nonlinear symmetric baroclinic instability of a zonal shear-flow. J. Fluid Mech. 68, 757–768 (1975)ADSzbMATHCrossRefGoogle Scholar
  63. G.P. Williams, Barotropic instability and equatorial superrotation. J. Atmos. Sci. 60, 2136–2152 (2003)ADSCrossRefGoogle Scholar
  64. M. Yamamoto, Gravity waves and convection cells resulting from feedback heating of Venus’ lower clouds. J. Meteorol. Soc. Japan 81, 885–892 (2003)CrossRefGoogle Scholar
  65. R.E. Young, H. Houben, L. Pfister, Baroclinic instability in the Venus atmosphere. J. Atmos. Sci. 41, 2310–2333 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Atmospheric, Oceanic & Planetary PhysicsUniversity of OxfordOxfordUK

Personalised recommendations