Direct Product and Convolution

  • Jan Pachl
Part of the Fields Institute Monographs book series (FIM, volume 30)


As I noted in Sect.6.7, historically one source of the uniform measure concept had been the study of convolution of measures on topological vector spaces and on topological groups. In this chapter I explore the connection between uniform measures and convolution in a fairly general setting that includes convolution on topological groups as a special case.


Direct Product Topological Group Compact Group Topological Vector Space Convex Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aguayo-Garrido, J.: Weakly compact operators and the Dunford-Pettis property on uniform spaces. Ann. Math. Blaise Pascal 5(2), 1–6 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandroff, A.D.: Additive set-functions in abstract spaces. Rec. Math. [Mat. Sbornik] N. S. 8(50), 307–348 (1940); 9(51), 563–628 (1941); 13(55), 169–238 (1943)Google Scholar
  3. 3.
    Arens, R.F., Eells Jr., J.: On embedding uniform and topological spaces. Pacific J. Math. 6, 397–403 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arkhangelskiĭ, A.V.: Classes of topological groups. Uspekhi Mat. Nauk 36(3 [219]), 127–146, 255 (1981). In Russian. English translation: Russian Math. Surveys 36, 3 (1981), 151–174Google Scholar
  5. 5.
    Badrikian, A.: Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques. Lecture Notes in Mathematics, vol. 139. Springer, Berlin (1970)Google Scholar
  6. 6.
    Bentley, H.L., Herrlich, H., Hušek, M.: The historical development of uniform, proximal, and nearness concepts in topology. In: Handbook of the History of General Topology, vol. 2, pp. 577–629. Kluwer Academic, Dordrecht/Boston/London (1998)Google Scholar
  7. 7.
    Berezanskiĭ, I.A.: Measures on uniform spaces and molecular measures. Trudy Moskov. Mat. Obšč. 19, 3–40 (1968). In Russian. English translation: Trans. Moscow Math. Soc. 19 (1968), 1–40Google Scholar
  8. 8.
    Berglund, J.F., Junghenn, H.D., Milnes, P.: Analysis on Semigroups. Wiley, New York (1989)zbMATHGoogle Scholar
  9. 9.
    Berruyer, J., Ivol, B.: Espaces de mesures et compactologies. Publ. Dép. Math. (Lyon) 9(1), 1–35 (1972)Google Scholar
  10. 10.
    Billingsley, P.: The invariance principle for dependent random variables. Trans. Am. Math. Soc. 83, 250–268 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bourbaki, N.: Éléments de Mathématique. Topologie générale. Ch. I et II. Hermann & Cie., Paris (1940)zbMATHGoogle Scholar
  13. 13.
    Bourbaki, N.: Éléments de Mathématique. Intégration. Ch. 7 et 8. Hermann, Paris (1963)Google Scholar
  14. 14.
    Bouziad, A., Troallic, J.P.: A precompactness test for topological groups in the manner of Grothendieck. Topol. Proc. 31(1), 19–30 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Buchwalter, H.: Topologies et compactologies. Publ. Dép. Math. (Lyon) 6(2), 1–74 (1969)Google Scholar
  16. 16.
    Buchwalter, H.: Fonctions continues et mesures sur un espace complètement régulier. In: Summer School on Topological Vector Spaces (Univ. Libre Bruxelles, Brussels, 1972). Lecture Notes in Mathematics, vol. 331, pp. 183–202. Springer, Berlin (1973)Google Scholar
  17. 17.
    Buchwalter, H.: Le rôle des partitions continues de l’unité dans la théorie des mesures scalaires ou vectorielles. In: Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977), vol. I. Lecture Notes in Mathematics, vol. 644, pp. 83–95. Springer, Berlin (1978)Google Scholar
  18. 18.
    Buchwalter, H., Pupier, R.: Complétion d’un espace uniforme et formes linéaires. C. R. Acad. Sci. Paris Sér. A–B 273, A96–A98 (1971)Google Scholar
  19. 19.
    Budak, T., Işık, N., Pym, J.S.: Minimal determinants of topological centres for some algebras associated with locally compact groups. Bull. Lond. Math. Soc. 43, 495–506 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Caby, E.: Convergence of measures on uniform spaces. Thesis, University of California, Berkeley (1976)Google Scholar
  21. 21.
    Caby, E.: The weak convergence of uniform measures. J. Multivariate Anal. 9(1), 130–137 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Caby, E.: Extension of uniform measures. Proc. Am. Math. Soc. 89(3), 433–439 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Caby, E.: A note on the convolution of probability measures. Proc. Am. Math. Soc. 99(3), 549–554 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Čech, E.: Topological Spaces. Czechoslovak Academy of Sciences, Prague (1966)zbMATHGoogle Scholar
  25. 25.
    Choquet, G.: Étude des spaces uniformes à partir de la notion d’écart. Enseignement Mathematique (2) 11, 170–174 (1965)Google Scholar
  26. 26.
    Choquet, G.: Mesures coniques, affines et cylindriques. In: Symposia Mathematica, vol. II (INDAM, Rome, 1968), pp. 145–182. Academic, London (1969)Google Scholar
  27. 27.
    Christensen, J.P.R.: Topology and Borel structure. North-Holland Mathematics Studies, vol. 10. North-Holland, Amsterdam (1974)Google Scholar
  28. 28.
    Christensen, J.P.R., Pachl, J.: Measurable functionals on function spaces. Ann. Inst. Fourier (Grenoble) 31(2), 137–152 (1981)Google Scholar
  29. 29.
    Cooper, J.B.: Saks spaces and applications to functional analysis. North-Holland Mathematics Studies, vol. 139, 2nd edn. North-Holland, Amsterdam (1987)Google Scholar
  30. 30.
    Cooper, J.B., Schachermayer, W.: Uniform measures and co-Saks spaces. In: Functional Analysis, Holomorphy, and Approximation Theory (Rio de Janeiro, 1978). Lecture Notes in Mathematics, vol. 843, pp. 217–246. Springer, Berlin (1981)Google Scholar
  31. 31.
    Császár, Á.: General Topology. Adam Hilger Ltd., Bristol (1978)Google Scholar
  32. 32.
    Csiszár, I.: On the weak* continuity of convolution in a convolution algebra over an arbitrary topological group. Studia Sci. Math. Hungar. 6, 27–40 (1971)MathSciNetGoogle Scholar
  33. 33.
    Dales, H.G., Lau, A.T.M., Strauss, D.: Banach algebras on semigroups and on their compactifications. Mem. Am. Math. Soc. 205(966) (2010)Google Scholar
  34. 34.
    D’Aristotile, A., Diaconis, P., Freedman, D.: On merging of probabilities. Sankhyā Ser. A 50(3), 363–380 (1988)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Davydov, Y., Rotar, V.: On asymptotic proximity of distributions. J. Theor. Probab. 22(1), 82–99 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Deaibes, A.: Espaces uniformes et espaces de mesures. Publ. Dép. Math. (Lyon) 12(4), 1–166 (1975)Google Scholar
  37. 37.
    Deaibes, A.: Caractérisation des mesures qui intègrent toutes les fonctions réelles mesurables. Publ. Dép. Math. (Lyon) 15(3), 75–80 (1978)Google Scholar
  38. 38.
    Deaibes, A.: Mesures sur les espaces uniformes de type (σ1 ). Publ. Dép. Math. (Lyon) 15(3), 63–73 (1978)Google Scholar
  39. 39.
    Deaibes, A.: Mesures uniformes maximales. Comment. Math. Univ. Carolin. 21(3), 551–562 (1980)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Deaibes, A., Pupier, R.: Sur la sommabilité de familles de fonctions uniformément continues. Comment. Math. Univ. Carolin. 18(4), 741–753 (1977)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Dudley, R.M.: Convergence of Baire measures. Studia Math. 27, 251–268 (1966); Correction: Studia Math. 51, 275 (1974)Google Scholar
  42. 42.
    Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563–1572 (1968)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Dudley, R.M.: Probabilities and metrics. Matematisk Institut, Aarhus Universitet, Aarhus (1976). Lecture Notes Series No. 45Google Scholar
  44. 44.
    Dudley, R.M.: Real analysis and probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002); Revised reprint of the 1989 originalGoogle Scholar
  45. 45.
    Dunford, N., Schwartz, J.T.: Linear Operators. I. General Theory. Interscience Publishers, New York (1958)zbMATHGoogle Scholar
  46. 46.
    Edgar, G.A.: Measurability in a Banach space. Indiana Univ. Math. J. 26(4), 663–677 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Engelking, R.: General Topology, 2nd edn. Heldermann Verlag, Berlin (1989)zbMATHGoogle Scholar
  48. 48.
    Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. Springer, New York (2001)Google Scholar
  49. 49.
    Fedorova, V.P.: A dual characterization of the completion and completeness of a uniform space. Mat. Sb. (N.S.) 64(106), 631–639 (1964); In RussianGoogle Scholar
  50. 50.
    Fedorova, V.P.: Linear functionals and Daniell integral on spaces of uniformly continuous functions. Mat. Sb. (N.S.) 74(116), 191–201 (1967); In Russian. English translation: Math. USSR – Sbornik 3, 177–185 (1967)Google Scholar
  51. 51.
    Fedorova, V.P.: Dual equivalents of ultracompleteness and paracompactness. Mat. Sb. (N.S.) 76 (118), 566–572 (1968); In RussianGoogle Scholar
  52. 52.
    Fedorova, V.P.: Daniell integrals on an ultracomplete uniform space. Mat. Zametki 16, 601–610 (1974); In Russian. English translation: Math. Notes 16, 950–955 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Fedorova, V.P.: Integral representations of functionals on spaces of uniformly continuous functions. Sibirsk. Mat. Zh. 23(5), 205–218, 225 (1982); In Russian. English translation: Siber. Math. J. 23, 753–762 (1983)Google Scholar
  54. 54.
    Fedorova, V.P.: Linear functionals on spaces of uniformly continuous functions, and abstract measures. Mat. Zametki 36(5), 743–754, 799 (1984); In Russian. English translation: Math. Notes 36(5), 872–877 (1984)Google Scholar
  55. 55.
    Ferri, S., Neufang, M.: On the topological centre of the algebra LUC(G) for general topological groups. J. Funct. Anal. 244(1), 154–171 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Fortet, R., Mourier, E.: Convergence de la répartition empirique vers la répartition théorique. Ann. Sci. Ecole Norm. Sup. (3) 70, 267–285 (1953)Google Scholar
  57. 57.
    Fremlin, D.H.: Measure theory, vol. 1. The Irreducible Minimum, 2nd edn. Torres Fremlin, Colchester (2011)Google Scholar
  58. 58.
    Fremlin, D.H.: Measure theory, vol. 2. Broad Foundations, 2nd edn. Torres Fremlin, Colchester (2010)Google Scholar
  59. 59.
    Fremlin, D.H.: Measure theory, vol. 3. Measure Algebras. Torres Fremlin, Colchester (2004). Corrected second printingGoogle Scholar
  60. 60.
    Fremlin, D.H.: Measure theory, vol. 4. Topological Measure Spaces, Parts I, II. Torres Fremlin, Colchester (2006). Corrected second printingGoogle Scholar
  61. 61.
    Fremlin, D.H.: Measure theory, vol. 5. Set-Theoretic Measure Theory, Parts I, II. Torres Fremlin, Colchester (2008)Google Scholar
  62. 62.
    Fremlin, D.H.: Topological Spaces After Forcing (2011). (Version of 16.6.11).
  63. 63.
    Frolík, Z.: Mesures uniformes. C. R. Acad. Sci. Paris Sér. A–B 277, A105–A108 (1973)Google Scholar
  64. 64.
    Frolík, Z.: Représentation de Riesz des mesures uniformes. C. R. Acad. Sci. Paris Sér. A–B 277, A163–A166 (1973)Google Scholar
  65. 65.
    Frolík, Z.: Measurable uniform spaces. Pacific J. Math. 55, 93–105 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Frolík, Z.: Uniform maps into normed spaces. Ann. Inst. Fourier (Grenoble) 24(3), 43–55 (1974)Google Scholar
  67. 67.
    Frolík, Z. (ed.): Seminar Uniform Spaces 1973–1974. Mathematical Institute, Czechoslovak Academy of Sciences, Prague (1975)Google Scholar
  68. 68.
    Frolík, Z.: Three technical tools in uniform spaces. In: Seminar Uniform Spaces 1973–1974, pp. 3–26. Mathematical Institute, Czechoslovak Academy of Sciences, Prague (1975)Google Scholar
  69. 69.
    Frolík, Z.: Measure-fine uniform spaces I. In: Measure Theory (Oberwolfach, 1975). Lecture Notes in Mathematics, vol. 541, pp. 403–413. Springer, Berlin (1976)Google Scholar
  70. 70.
    Frolík, Z. (ed.): Seminar Uniform Spaces 1975–1976. Mathematical Institute, Czechoslovak Academy of Sciences, Prague (1976)Google Scholar
  71. 71.
    Frolík, Z.: Three uniformities associated with uniformly continuous functions. In: Symposia Mathematica, vol. XVII (INDAM, Rome, 1973), pp. 69–80. Academic, London (1976)Google Scholar
  72. 72.
    Frolík, Z.: Recent development of theory of uniform spaces. In: General Topology and Its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., Part A, Prague, 1976). Lecture Notes in Mathematics, vol. 609, pp. 98–108. Springer, Berlin (1977)Google Scholar
  73. 73.
    Frolík, Z. (ed.): Seminar Uniform Spaces 1976–1977. Mathematical Institute, Czechoslovak Academy of Sciences, Prague (1978)Google Scholar
  74. 74.
    Frolík, Z.: Measure-fine uniform spaces II. In: Measure Theory (Oberwolfach, 1981). Lecture Notes in Mathematics, vol. 945, pp. 34–41. Springer, Berlin (1982)Google Scholar
  75. 75.
    Frolík, Z.: Existence of l -partitions of unity. Rend. Sem. Mat. Univ. Politec. Torino 42(1), 9–14 (1984)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Frolík, Z., Pachl, J., Zahradník, M.: Examples of uniform measures. In: Proceedings of the Conference on Topology and Measure I (Zinnowitz, 1974), pp. 139–152. Ernst-Moritz-Arndt University, Greifswald (1978)Google Scholar
  77. 77.
    Frolík, Z., Pelant, J., Vilímovský, J.: On hedgehog–topologically fine uniform spaces. In: Seminar Uniform Spaces 1975–1976, pp. 75–86. Mathematical Institute, Czechoslovak Academy of Sciences, Prague (1976)Google Scholar
  78. 78.
    Frolík, Z., Pelant, J., Vilímovský, J.: Extensions of uniformly continuous functions. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26(2), 143–148 (1978)zbMATHGoogle Scholar
  79. 79.
    Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4: Applications of Harmonic Analysis. Academic, New York (1964)Google Scholar
  80. 80.
    Gibbs, A.L., Su, E.S.: On choosing and bounding probability metrics. Internat. Statist. Rev. 70(3), 419–435 (2002)CrossRefzbMATHGoogle Scholar
  81. 81.
    Gillman, L., Jerison, M.: Rings of continuous functions. Graduate Texts in Mathematics, vol. 43. Springer, New York (1976); Reprint of the 1960 edition [Van Nostrand]Google Scholar
  82. 82.
    Glasner, E.: On two problems concerning topological centers. Topol. Proc. 33, 29–39 (2009)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad (1949); In RussianGoogle Scholar
  84. 84.
    Granirer, E.: On Baire measures on D-topological spaces. Fund. Math. 60, 1–22 (1967)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Granirer, E.E., Leinert, M.: On some topologies which coincide on the unit sphere of the Fourier–Stieltjes algebra B(G) and of the measure algebra M(G). Rocky Mountain J. Math. 11(3), 459–472 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux. Am. J. Math. 74, 168–186 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Guran, I.I.: On topological groups close to being Lindelöf. Dokl. Akad. Nauk SSSR 256(6), 1305–1307 (1981); In Russian. English translation: Soviet Math. Dokl. 23(1), 173–175 (1981)Google Scholar
  88. 88.
    Hager, A.W.: On inverse-closed subalgebras of C(X). Proc. Lond. Math. Soc. (3) 19, 233–257 (1969)Google Scholar
  89. 89.
    Hager, A.W.: Measurable uniform spaces. Fund. Math. 77(1), 51–73 (1972)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Hager, A.W.: Some nearly fine uniform spaces. Proc. Lond. Math. Soc. (3) 28, 517–546 (1974)Google Scholar
  91. 91.
    Hager, A.W.: Real-valued functions on Alexandroff (zero-set) spaces. Comment. Math. Univ. Carolinae 16(4), 755–769 (1975)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Hager, A.W.: Cozero fields. Confer. Sem. Mat. Univ. Bari 175, 1–23 (1980)MathSciNetGoogle Scholar
  93. 93.
    Hager, A.W., Reynolds, G.D., Rice, M.D.: Borel-complete topological spaces. Fund. Math. 75(2), 135–143 (1972)MathSciNetGoogle Scholar
  94. 94.
    van Handel, R.: Uniform observability of hidden Markov models and filter stability for unstable signals. Ann. Appl. Probab. 19(3), 1172–1199 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Haydon, R.: Sur les espaces M(T) et M (T). C. R. Acad. Sci. Paris Sér. A-B 275, A989–A991 (1972)MathSciNetGoogle Scholar
  96. 96.
    Hewitt, E.: Linear functionals on spaces of continuous functions. Fund. Math. 37, 161–189 (1950)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. I, 2nd edn. Springer, Berlin (1979)Google Scholar
  98. 98.
    Hindman, N., Strauss, D.: Algebra in the Stone-Čech compactification. de Gruyter Expositions in Mathematics, vol. 27. Walter de Gruyter & Co., Berlin (1998)Google Scholar
  99. 99.
    Isbell, J.R.: On finite-dimensional uniform spaces. Pacific J. Math. 9, 107–121 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  100. 100.
    Isbell, J.R.: Uniform spaces. Mathematical Surveys, No. 12. American Mathematical Society, Providence, RI (1964)Google Scholar
  101. 101.
    Isbell, J.R.: Insufficiency of the hyperspace. Proc. Cambridge Philos. Soc. 62, 685–686 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Jech, T.: Set Theory, 3rd edn. Springer, Berlin (2003)zbMATHGoogle Scholar
  103. 103.
    Kalton, N.J.: The Orlicz–Pettis theorem. In: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979). Contemprary Mathematics, vol. 2, pp. 91–100. American Mathematical Society, Providence, RI (1980)Google Scholar
  104. 104.
    Kalton, N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55(2), 171–217 (2004)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Kantorovich, L.V., Rubinshteĭn, G.S.: On a space of completely additive functions. Vestnik Leningrad. Univ. 13(7), 52–59 (1958); In RussianGoogle Scholar
  106. 106.
    Katětov, M.: On real-valued functions in topological spaces. Fund. Math. 38, 85–91 (1951); Correction: Fund. Math. 40, 203–205 (1953)Google Scholar
  107. 107.
    Katětov, M.: On a category of spaces. In: General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), pp. 226–229. Academic, New York (1962)Google Scholar
  108. 108.
    Katětov, M.: On certain projectively generated continuity structures. In: Sierpiński, W., Kuratowski, K. (eds.) Simposio di Topologia (Università di Messina, 27–30 Aprile, 1964), vol. I, pp. 47–50. Edizioni Oderisi, Gubbio (1965); Correction: Comment. Math. Univ. Carolin. 6, 251–255 (1965)Google Scholar
  109. 109.
    Kelley, J.L.: General topology. Graduate Texts in Mathematics, No. 27. Springer, New York (1975); Reprint of the 1955 edition [Van Nostrand]Google Scholar
  110. 110.
    Khurana, S.S.: Uniform measures on vector-valued functions. Publ. Math. Debrecen 55(1–2), 73–82 (1999)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Khurana, S.S.: Product of uniform measures. Ric. Mat. 57(2), 203–208 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  112. 112.
    Khurana, S.S., Colasante, M.L.: Vector-valued free uniform measures. Atti Sem. Mat. Fis. Univ. Modena 47(2), 429–439 (1999)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Kirk, R.B.: Complete topologies on spaces of Baire measure. Trans. Am. Math. Soc. 184, 1–29 (1973)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Krée, P.: Équations linéaires à coefficients aléatoires. In: Symposia Mathematica, vol. VII (INDAM, Rome, 1970), pp. 515–546. Academic, London (1971)Google Scholar
  115. 115.
    Krée, P.: Images de probabilités cylindriques par certaines applications non linéaires. Accouplement de processus linéaires. C. R. Acad. Sci. Paris Sér. A-B 274, A342–A345 (1972)Google Scholar
  116. 116.
    Kuratowski, K.: Topology, vol. I, New edition. Academic, New York (1966)Google Scholar
  117. 117.
    Larson, P.B.: The filter dichotomy and medial limits. J. Math. Log. 9(2), 159–165 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  118. 118.
    Lau, A.T.M.: Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups. Math. Proc. Cambridge Philos. Soc. 99(2), 273–283 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  119. 119.
    Lau, A.T.M.: Amenability of semigroups. In: The Analytical and Topological Theory of Semigroups, pp. 313–334. Walter de Gruyter, Berlin (1990)Google Scholar
  120. 120.
    Lau, A.T.M., Pym, J.: The topological centre of a compactification of a locally compact group. Math. Z. 219(4), 567–579 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  121. 121.
    LeCam, L.: Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statist. 2, 207–236 (1957)MathSciNetGoogle Scholar
  122. 122.
    LeCam, L.: Note on a Certain Class of Measures (1970). Unpublished manuscript.
  123. 123.
    LeCam, L.: Remarques Sur le Théorème Limite Central dans les Espaces Localement Convexes, pp. 233–249. Éditions Centre Nat. Recherche Sci., Paris (1970)Google Scholar
  124. 124.
    LeCam, L.: Some special results of measure theory. Technical Report 265, Department of Statistics, University of California, Berkeley (1990)Google Scholar
  125. 125.
    Lévy, P.: Calcul des Probabilités. Gauthier-Villars, Paris (1925)zbMATHGoogle Scholar
  126. 126.
    Marxen, D.: Uniform semigroups. Math. Ann. 202, 27–36 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  127. 127.
    McKennon, K.: Multipliers, positive functionals, positive-definite functions, and Fourier–Stieltjes transforms. Mem. Amer. Math. Soc. 111. American Mathematical Society, Providence, RI (1971)Google Scholar
  128. 128.
    Megrelishvili, M.G., Pestov, V.G., Uspenskij, V.V.: A note on the precompactness of weakly almost periodic groups. In: Nuclear Groups and Lie groups (Madrid, 1999). Res. Exp. Math., vol. 24, pp. 209–216. Heldermann, Lemgo (2001)Google Scholar
  129. 129.
    Megrelishvili, M.G.: Compactifications of semigroups and semigroup actions. Topology Proc. 31, 611–650 (2007)MathSciNetGoogle Scholar
  130. 130.
    Namioka, I.: On certain actions of semi-groups on L-spaces. Studia Math. 29, 63–77 (1967)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Neufang, M.: A unified approach to the topological centre problem for certain Banach algebras arising in abstract harmonic analysis. Arch. Math. (Basel) 82(2), 164–171 (2004)Google Scholar
  132. 132.
    Neufang, M., Pachl, J., Salmi, P.: Uniformly equicontinuous sets, right multiplier topology and continuity of convolution. arXiv:1202.4350v1 (2012)Google Scholar
  133. 133.
    Neumann, B.H.: Groups covered by permutable subsets. J. Lond. Math. Soc. 29, 236–248 (1954)CrossRefzbMATHGoogle Scholar
  134. 134.
    Pachl, J.: Free uniform measures. Comment. Math. Univ. Carolin. 15, 541–553 (1974)MathSciNetzbMATHGoogle Scholar
  135. 135.
    Pachl, J.: Free uniform measures on sub-inversion-closed spaces. Comment. Math. Univ. Carolin. 17(2), 291–306 (1976)MathSciNetzbMATHGoogle Scholar
  136. 136.
    Pachl, J.: Measures as functionals on uniformly continuous functions. Pacific J. Math. 82(2), 515–521 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  137. 137.
    Pachl, J.: Uniform measures on topological groups. Compositio Math. 45(3), 385–392 (1982)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Pachl, J.: Uniform measures and convolution on topological groups. arXiv:math/0608139v4 (2006)Google Scholar
  139. 139.
    Pachl, J.: Semiuniform semigroups and convolution. arXiv:0811.3576v2 (2008)Google Scholar
  140. 140.
    Pachl, J.: Ambitable topological groups. Topol. Appl. 156(13), 2200–2208 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  141. 141.
    Pachl, J.: Measurable centres in convolution semigroups. Topol. Appl. 159(10–11), 2649–2653 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  142. 142.
    Pelant, J.: Reflections not preserving completeness. In: Seminar Uniform Spaces 1973–1974, pp. 235–240. Math. Institute, Czechoslovak Academy of Sciences, Prague (1975)Google Scholar
  143. 143.
    Pestov, V.: Dynamics of infinite-dimensional groups. University Lecture Series, vol. 40. American Mathematical Society, Providence, RI (2006)Google Scholar
  144. 144.
    Pol, R.: Remark on the restricted Baire property in compact spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24(8), 599–603 (1976)MathSciNetzbMATHGoogle Scholar
  145. 145.
    Prokhorov, Yu.V.: Convergence of random processes and limit theorems in probability theory. Teor. Veroyatnost. i Primenen. 1, 177–238 (1956); In Russian. English translation: Theor. Probab. Appl. 1, 3 (1956), 157–214Google Scholar
  146. 146.
    Protasov, I.: Combinatorics of numbers. Mathematical Studies Monograph Series, vol. 2. VNTL, Lviv (1997)Google Scholar
  147. 147.
    Pták, V.: An extension theorem for separately continuous functions and its application to functional analysis. Czechoslovak Math. J. 14(89), 562–581 (1964)MathSciNetGoogle Scholar
  148. 148.
    Pták, V.: Algebraic extensions of topological spaces. In: Contributions to Extension Theory of Topological Structures (Proc. Sympos., Berlin, 1967), pp. 179–188. Deutsch. Verlag Wissensch., Berlin (1969)Google Scholar
  149. 149.
    Pym, J.S.: The convolution of linear functionals. Proc. Lond. Math. Soc. (3) 14, 431–444 (1964)Google Scholar
  150. 150.
    Pym, J.S.: The convolution of functionals on spaces of bounded functions. Proc. Lond. Math. Soc. (3) 15, 84–104 (1965)Google Scholar
  151. 151.
    Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester (1991)zbMATHGoogle Scholar
  152. 152.
    Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. I. Springer, New York (1998)zbMATHGoogle Scholar
  153. 153.
    Raĭkov, D.A.: Free locally convex spaces for uniform spaces. Mat. Sb. (N.S.) 63(105), 582–590 (1964); In RussianGoogle Scholar
  154. 154.
    Raĭkov, D.A.: Duality method in the theory of uniform spaces. In: Proceedings of the Fourth All-Union Topology Conf. (Tashkent, 1963), pp. 155–162. FAN, Tashkent (1967); In RussianGoogle Scholar
  155. 155.
    Rice, M.D.: Subcategories of uniform spaces. Trans. Am. Math. Soc. 201, 305–314 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  156. 156.
    Rice, M.D.: Composition properties in uniform spaces. Acta Math. Acad. Sci. Hungar. 30(3–4), 189–195 (1977)MathSciNetCrossRefGoogle Scholar
  157. 157.
    Rice, M.D.: Uniform ideas in analysis. Real Anal. Exchange 6(2), 139–185 (1980/81)Google Scholar
  158. 158.
    Riesz, F.: Sur les opérations fonctionnelles linéaires. C. R. Math. Acad. Sci. Paris 149, 974–977 (1909)Google Scholar
  159. 159.
    Roelcke, W., Dierolf, S.: Uniform Structures on Topological Groups and their Quotients. McGraw-Hill, New York (1981)zbMATHGoogle Scholar
  160. 160.
    Rogers, C.A., Jayne, J.E.: K-analytic sets. In: Analytic Sets (London Math. Soc. Conf., University College London, July 1978), pp. 1–181. Academic, New York (1980)Google Scholar
  161. 161.
    Ruppert, W.: Compact semitopological semigroups: an intrinsic theory. Lecture Notes in Mathematics, vol. 1079. Springer, Berlin (1984)Google Scholar
  162. 162.
    Salmi, P.: Joint continuity of multiplication on the dual of the left uniformly continuous functions. Semigroup Forum 80(1), 155–163 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  163. 163.
    Schachermayer, W.: Measurable and continuous linear functionals on spaces of uniformly continuous functions. In: Measure Theory (Oberwolfach, 1981). Lecture Notes in Mathematics, vol. 945, pp. 155–166. Springer, Berlin (1982)Google Scholar
  164. 164.
    Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1971); Third printing correctedGoogle Scholar
  165. 165.
    Schwartz, L.: Radon measures on arbitrary topological spaces and cylindrical measures. Oxford University Press, London (1973). Tata Institute of Fundamental Research Studies in Mathematics, No. 6Google Scholar
  166. 166.
    Semadeni, Z.: Banach spaces of continuous functions, vol. I. PWN—Polish Scientific Publishers, Warsaw (1971); Monografie Matematyczne, Tom 55Google Scholar
  167. 167.
    Sentilles, D., Wheeler, R.F.: Linear functionals and partitions of unity in C b(X). Duke Math. J. 41, 483–496 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  168. 168.
    Tomášek, S.: On a certain class of Λ-structures. I, II. Czechoslovak Math. J. 20(95), 1–18, 19–33 (1970)Google Scholar
  169. 169.
    Topsøe, F.: Topology and measure. Lecture Notes in Mathematics, vol. 133. Springer, Berlin (1970)Google Scholar
  170. 170.
    Tortrat, A.: Sur la continuité de l’opération convolution dans un demi-groupe topologique X. C. R. Acad. Sci. Paris Sér. A–B 272, A588–A591 (1971)Google Scholar
  171. 171.
    Uspenskij, V.V.: Compactifications of topological groups. In: Proceedings of the Ninth Prague Topological Symposium (2001), pp. 331–346 (electronic). Topol. Atlas, North Bay, Ontario (2002)Google Scholar
  172. 172.
    Uspenskij, V.V.: On subgroups of minimal topological groups. Topol. Appl. 155(14), 1580–1606 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  173. 173.
    Varadarajan, V.S.: Measures on topological spaces. Mat. Sb. (N.S.) 55(97), 35–100 (1961); In Russian. English translation: Amer. Math. Soc. Transl. (2) 48, 161–228 (1965)Google Scholar
  174. 174.
    Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)Google Scholar
  175. 175.
    Villani, C.: Optimal transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)Google Scholar
  176. 176.
    de Vries, J.: Elements of topological dynamics. Mathematics and Its Applications, vol. 257. Kluwer Academic, Dordrecht (1993)Google Scholar
  177. 177.
    Waelbroeck, L.: Some theorems about bounded structures. J. Funct. Anal. 1, 392–408 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  178. 178.
    Weaver, N.: Lipschitz Algebras. World Scientific, River Edge, NJ (1999)CrossRefzbMATHGoogle Scholar
  179. 179.
    Weil, A.: Sur les espaces à structure uniforme et sur la topologie générale. Hermann & Cie, Paris (1937)zbMATHGoogle Scholar
  180. 180.
    Wheeler, R.F.: A survey of Baire measures and strict topologies. Expo. Math. 1(2), 97–190 (1983)zbMATHGoogle Scholar
  181. 181.
    Zahradník, M.: Projective limits of uniform measures. Thesis, Charles University, Prague (1974); In CzechGoogle Scholar
  182. 182.
    Zahradník, M.: Inversion closed uniform spaces have the Daniell property. In: Seminar Uniform Spaces 1973–1974, pp. 233–234. Math. Institute, Czechoslovak Academy of Sciences, Prague (1975)Google Scholar
  183. 183.
    Zahradník, M.: l 1-continuous partitions of unity on normed spaces. Czechoslovak Math. J. 26(101)(2), 319–329 (1976)Google Scholar
  184. 184.
    Zolotarev, V.M.: Modern Theory of Summation of Random Variables. VSP, Utrecht (1997)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jan Pachl
    • 1
  1. 1.The Fields Institute for Research in Mathematical SciencesTorontoCanada

Personalised recommendations