Skip to main content

Constructal Design of T-Shaped Water Distribution Networks

  • Chapter
  • First Online:
Constructal Law and the Unifying Principle of Design

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

More than one billion people do not have access to clean drinking water both in urban and rural areas in the world. This is why, according to a number of scientists involved in drinking water engineering, hundreds of kilometers of networks for water distribution will be constructed or rehabilitated in the coming decades because of both population growth and the crucial need of water services. Therefore the need to optimally design these systems will be increasing everywhere (North and South) and will keep on increasing, in particular in developing countries, very poorly equipped and in need to make strong efforts for the construction of such systems. According to literature, the three main design constraints that are generally met in water distribution projects are water quality, pumping energy, and investment cost [1–4]. In most of the cases, the design problem formulates as follows: “a certain population of density \( {\sigma_{\rm{p}}} \) grouped in households, distributed over a given area, needs to be supplied in drinking water through a distribution network. A lot of technically acceptable solutions can be found to this problem. Some methods differ from the others in terms of total head losses, overall residence time, initial or total investment due to the design” [5]. The challenge for engineers relies on how to optimally design the network in terms of pumping energy and the evolution of water quality in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta I, Bassin J, Gupta A, Khanna P. Optimization of water distribution systems. Environ Softw. 1993;8:101–13.

    Article  Google Scholar 

  2. Savic D, Walters G. Genetic algorithms for least-cost design of water distribution networks. J Water Res Pl-ASCE. 1997;123:67–77.

    Article  Google Scholar 

  3. Gupta I, Gupta A, Khanna P. Genetic algorithm for optimization of water distribution systems. Environ Modell Softw. 1999;14:437–46.

    Article  Google Scholar 

  4. Klempous R, Kotowski J, Nikodem J, Ulasiewicz J. Optimization algorithms of operative control in water distribution systems. J Comput Appl Math. 1997;84:91–9.

    Article  MathSciNet  Google Scholar 

  5. Bieupoude P. Approche constructal pour l’optimisation de réseaux hydrauliques, Thèse de doctorat, Université de Perpignan, France et 2iE Institut International d’Ingénierie de l’Eau et de l’Environnement; Ouagadougou, Burkina Faso; 2011

    Google Scholar 

  6. Chu C, Lin M, Liu G, Sung Y. Application of immune algorithms on solving minimum-cost problem of water distribution network. Math Comput Model. 2008;48:1888–900.

    Article  MATH  Google Scholar 

  7. Baños R, Bans R, Gil C, Reca J, Montoya F. A memetic algorithm applied to the design of water distribution networks. Appl Soft Comput. 2010;10:261–6.

    Article  Google Scholar 

  8. Mustonen S, Tissari S, Huikko L, Kolehmainen M, Lehtola M, Hirvonen A. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods. Water Res. 2008;42:2421–30.

    Article  Google Scholar 

  9. Bolognesi A, Bragalli C, Marchi A, Artina S. Genetic heritage evolution by stochastic transmission in the optimal design of water distribution network. Adv Eng Softw. 2010;41:792–801.

    Article  MATH  Google Scholar 

  10. Simpson A, Dandy G, Murphy L. Genetic algorithm compared to other techniques for pipe optimization. J Water Res Pl-ASCE. 1994;120:423–43.

    Article  Google Scholar 

  11. Kohpaei J, Sathasivan A. Chlorine decay prediction in bulk water using the parallel second order model: an analytical solution development. Chem Eng J. 2011;171:232–41.

    Article  Google Scholar 

  12. Bai D, Pei-jun Yang P, Song L. Optimal design method of looped water distribution network. Systems Engineering – Theory and Practice. 2007;27:137–43.

    Article  Google Scholar 

  13. Todini E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water. 2000;2:115–22.

    Article  Google Scholar 

  14. Bejan A. Shape and structure from engineering to nature. UK: Cambridge; 2000.

    MATH  Google Scholar 

  15. Bejan A, Lorente S. Design with constructal theory. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  16. Azoumah Y, Mazet N, Neveu P. Constructal network for heat and mass transfer in a solid-gas reactive porous medium. Int J Heat Mass Tran. 2004;47:2961–70.

    Article  MATH  Google Scholar 

  17. Azoumah Y, Neveu P, Mazet N. Constructal design combined with entropy generation minimization for solid–gas reactors. Int J Therm Sci. 2006;45:716–28.

    Article  Google Scholar 

  18. Tondeur D, Fan Y, Luo L. Constructal optimization of arborescent structures with flow singularities. Chem Eng Sci. 2009;64(2009):3968–82.

    Google Scholar 

  19. Miguel A. Dendridic structures for fluid flow: laminar turbulent and constructal design. J Fluid Struc. 2010;26:330–5.

    Article  Google Scholar 

  20. Bejan A, Marden H. The constructal unification of biological and geophysical design. Phys Life Rev. 2009;6:85–102.

    Article  Google Scholar 

  21. Bejan A, Lorente S. The constructal law and the evolution of design in nature. Phys Life Rev. 2011;8:209–40.

    Article  Google Scholar 

  22. Bejan A, Rocha L, Lorente S. Thermodynamic optimization of geometry: T- and Y-shaped constructs of fluid streams. Int J Therm Sci. 2000;39:949–60.

    Article  Google Scholar 

  23. Wechsatol W, Lorente S, Bejan A. Tree-shaped insulated designs for the uniform distribution of hot water over an area. Int J Heat Mass Tran. 2001;44:3111–23.

    Article  MATH  Google Scholar 

  24. Wechsatol W, Lorente S, Bejan A. Development of tree-shaped flows by adding new users to existing networks of hot water pipes. Int J Heat Mass Tran. 2002;45:723–33.

    Article  MATH  Google Scholar 

  25. Wechsatol W, Lorente S, Bejan A. Tree-shaped network with loops. Int J Heat Mass Tran. 2005;48:573–83.

    Article  MATH  Google Scholar 

  26. Wechsatol W, Lorente S, Bejan A. Tree-shaped flow structures with local junction losses. Int J Heat Mass Tran. 2006;49:2957–64.

    Article  MATH  Google Scholar 

  27. Gosselin L, Bejan A. Tree networks for minimal pumping power. Int J Therm Sci. 2005;44:53–63.

    Article  Google Scholar 

  28. Gosselin L. Optimization of tree-shaped fluid networks with size limitations. Int J Therm Sci. 2007;46:434–43.

    Article  Google Scholar 

  29. Bieupoude P, Azoumah Y, Neveu P. Environmental optimization of tree-shaped water distribution networks. Water resources management VI. Proceedings of the sixth International Conference on Sustainable Water Resources Management; California 23-25 May; 2011. p. 99–109

    Google Scholar 

  30. Bieupoude P, Azoumah Y Neveu P. Constructal tree-shaped water distribution networks by an environmental approach. Int J Des Nat Ecodyn. (Forthcoming 2011)

    Google Scholar 

  31. Bieupoude P, Azoumah Y, Neveu P. Perspectives to urban water networks computer-based optimization methods by integrating the constructal design. Comp Environ Urban. (Forthcoming 2012)

    Google Scholar 

  32. Chase D, Savic D, Walski T. Haestad methods. In: Water distribution modeling. USA: Haestad press; 2001

    Google Scholar 

  33. Carlier M. Hydraulique générale et appliquée. Paris: Eyrolles; 1972.

    Google Scholar 

  34. Rossman L. EPANET 2 Users manual, Chapter 1. Cincinnati; 2000 EPA, United States.10.1038/News.2008.1004

  35. Bejan A, Lorente S. La loi constructale. Paris: L’Harmattan; 2005.

    Google Scholar 

  36. Azoumah Y, Bieupoude P, Neveu P. Optimal design of tree-shaped water distribution network using constructal approach: T-shaped and Y-shaped architectures optimization and comparison. Int Commun Heat Mass. 2012;39:182–9.

    Article  Google Scholar 

Download references

Acknowledgements

The International Institute for Water and Environmental Engineering 2iE, 01 BP 594 Ouagadougou 01, Burkina Faso (www.2ie-edu.org), and its financial partners are gratefully acknowledged for their supports that permitted to successfully achieve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bieupoude .

Editor information

Editors and Affiliations

Appendices

Appendix: First-Order Construct

We consider the network shown in Fig. 7.1. The Lagrangian function written to minimize the head losses subject to the residence time and the total surface writes as follows:

$$ {L_{\rm{g}}} = a\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{H}{{{2^1}}} + a\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{h}{{{2^2}}} + {\lambda_1}\left( {\frac{{\pi D_{{{H_1}}}^2}}{{4{Q_{{{H_1}}}}}}\frac{H}{{{2^1}}} + \frac{{\pi D_{{{h_1}}}^2}}{{4{Q_{{{h_1}}}}}}\frac{h}{{{2^2}}} - t} \right) + {\lambda_2}\left( {hH - {S_T}} \right). $$
(7.1)

By differentiating L g with respect to \( {D_{{{h_1}}}} \), \( {D_{{{H_1}}}} \), h, H, \( {\lambda_1} \), and \( {\lambda_2} \), and cancelling all the derivatives, we obtain

$$ - am\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^{{m + 1}}}}\frac{H}{{{2^1}}} + 2\frac{\pi }{4}{\lambda_1}\frac{{{D_{{{H_1}}}}}}{{{Q_{{{H_1}}}}}}\frac{H}{{{2^1}}} = 0, $$
(7.2a)
$$ - am\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^{{m + 1}}}}\frac{h}{{{2^2}}} + 2\frac{\pi }{4}{\lambda_1}\frac{{{D_{{{h_1}}}}}}{{{Q_{{{h_1}}}}}}\frac{h}{{{2^2}}} = 0, $$
(7.2b)
$$ a\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} + {\lambda_1}\frac{{\pi D_{{{H_1}}}^2}}{{4{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} + {\lambda_2}h = 0, $$
(7.2c)
$$ a\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} + {\lambda_1}\frac{{\pi D_{{{h_1}}}^2}}{{4{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} + {\lambda_2}H = 0, $$
(7.2d)
$$ \frac{{D_{{{H_1}}}^2}}{{{Q_{{{H_1}}}}}}\frac{H}{{{2^1}}} + \frac{{D_{{{h_1}}}^2}}{{{Q_{{{h_1}}}}}}\frac{h}{{{2^2}}} = \frac{{4t}}{\pi }, $$
(7.2e)
$$ \frac{{\partial {L_{\rm{g}}}}}{{\partial {\lambda_2}}} = 0 \Rightarrow hH - {S_{\rm{T}}} = 0. $$
(7.2f)

From (7.2a) and (7.2b), we can write

$$ \frac{{am\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^{{m + 1}}}}\frac{H}{{{2^1}}}}}{{am\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^{{m + 1}}}}\frac{h}{{{2^2}}}}} = \frac{{2\frac{\pi }{4}{\lambda_1}\frac{{{D_{{{H_1}}}}}}{{{Q_{{{H_1}}}}}}\frac{H}{{{2^1}}}}}{{2\frac{\pi }{4}{\lambda_1}\frac{{{D_{{{h_1}}}}}}{{{Q_{{{h_1}}}}}}\frac{h}{{{2^2}}}}}. $$
(7.3)

This yields in

$$ \frac{{D_{{{h_1}}}^{{m + 2}}}}{{D_{{{H_1}}}^{{m + 2}}}} = \frac{{Q_{{{h_1}}}^{{n + 1}}}}{{Q_{{{H_1}}}^{{n + 1}}}}. $$
(7.4)

And, noting that because of the symmetry in the structure \( 2{Q_{{{h_1}}}} = {Q_{{{H_1}}}} \), then we have

$$ \frac{{{D_H}_{{_1}}}}{{{D_h}_{{_1}}}} = {2^{\gamma }}\;{\text{with}}\quad \gamma = (n + 1)/(m + 2). $$
(7.5)

From (7.2a) and (7.2b), \( {\lambda_1} \) can be expressed as follows:

$$ {\lambda_1} = \frac{{2am}}{\pi }\frac{{Q_{{{H_1}}}^{{n + 1}}}}{{D_{{{H_1}}}^{{m + 2}}}} = \frac{{2am}}{\pi }\frac{{Q_{{{h_1}}}^{{n + 1}}}}{{D_{{{h_1}}}^{{m + 2}}}}. $$
(7.6)

By introducing \( {\lambda_1} \) in (7.2c) and in (7.2d) we obtain

$$ a\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} + \left( {\frac{{2am}}{\pi }\frac{{Q_{{{H_1}}}^{{n + 1}}}}{{D_{{{H_1}}}^{{m + 2}}}}} \right)\frac{{\pi D_{{{H_1}}}^2}}{{4{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} = - {\lambda_2}h, $$
(7.7)
$$ a\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} + \left( {\frac{{2am}}{\pi }\frac{{Q_{{{h_1}}}^{{n + 1}}}}{{D_{{{h_1}}}^{{m + 2}}}}} \right)\frac{{\pi D_{{{h_1}}}^2}}{{4{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} = - {\lambda_2}H. $$
(7.8)

This yields in

$$ \left( {a + \frac{{am}}{2}} \right)\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} = - {\lambda_2}h, $$
(7.9)
$$ \left( {a + \frac{{am}}{2}} \right)\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} = - {\lambda_2}H. $$
(7.10)

By dividing member by member (7.9) by (7.10), we obtain

$$ \frac{h}{H} = 2\frac{{Q_{{{H_1}}}^n}}{{Q_{{{h_1}}}^n}}\frac{{D_{{{h_1}}}^m}}{{D_{{{H_1}}}^m}}. $$
(7.11)

Considering (7.5) and the fact that 2Q h1 = Q H1 , (7.11) gives

$$ \frac{h}{H} = {2^{{n + 1 - m\gamma }}} = {f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}. $$
(7.12)

Considering (7.12) and (7.2f), we have

$$ \left\{ \begin{array}{lll} hH - {S_{\rm{T}}} = 0, \hfill \cr \frac{h}{H} = {2^{{n + 1 - m\gamma }}} ={f_{{{\rm{op}}{{\rm{t}}_1}}}}. \end{array} \right. $$
(7.13)

This allow writing, by eliminating h,

$$ {H^2} = \frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}}} \Rightarrow H = \sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_1}}}}} \right)}^{{ - 1}}}}}. $$
(7.14)

And then, with (7.12), we can determine h as follows:

$$ h = {f_{{{\rm{op}}{{\rm{t}}_1}}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_1}}}}} \right)}^{{ - 1}}}}}. $$
(7.15)

From (7.2e), we can write (by multiplying (7.2e) by the quantity Q h1/D² h1)

$$ \frac{{D_{{{H_1}}}^2}}{{D_{{{h_1}}}^2}}\frac{{{Q_{{{h_1}}}}}}{{{Q_{{{H_1}}}}}}\frac{H}{{{2^1}}} + \frac{h}{{{2^2}}} = \frac{{4t{Q_{{{h_1}}}}}}{{\pi D_{{{h_1}}}^2}}. $$
(7.16)

This yields, by considering (7.15) and (7.13), in

$$ {2^{{2\gamma - 2}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_1}}}}} \right)}^{{ - 1}}}}} + {2^{{ - 2}}}{f_{{{\rm{op}}{{\rm{t}}_1}}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_1}}}}} \right)}^{{ - 1}}}}} = \frac{{4t{Q_{{{h_1}}}}}}{{\pi D_{{{h_1}}}^2}}. $$
(7.17)

And then

$$ {D_{{{h_1}}}} = \sqrt {{\frac{{4t{Q_{{{h_1}}}}/\pi }}{{\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}} \right)}^{{ - 1}}}}} \left( {{2^{{2\gamma - 2}}} + {2^{{ - 2}}}{f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}} \right)}}}}; {D_{{{H_1}}}} = {2^{\gamma }}\sqrt {{\frac{{4t{Q_{{{h_1}}}}/\pi }}{{\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}} \right)}^{{ - 1}}}}} \left( {{2^{{2\gamma - 2}}} + {2^{{ - 2}}}{f_{{{\rm{op}}{{\rm{t}}_{{1}}}}}}} \right)}}}}. $$
(7.18)

Second-Order Construct

In the same manner as the previous case, the Lagrangian function writes as follows:

$$ \begin{array}{lll} {L_{\rm{g}}} = \left( {a\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} + a\frac{{Q_{{{H_2}}}^n}}{{D_{{{H_2}}}^m}}\frac{1}{{{2^2}}}} \right)H + \left( {a\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} + a\frac{{Q_{{{h_2}}}^n}}{{D_{{{h_2}}}^m}}\frac{1}{{{2^3}}}} \right)h + \hfill \cr {\lambda_1}\left( {\left( {\frac{{\pi D_{{{H_1}}}^2}}{{4{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} + \frac{{\pi D_{{{H_2}}}^2}}{{4{Q_{{{H_2}}}}}}\frac{1}{{{2^2}}}} \right)H + \left( {\frac{{\pi D_{{{h_1}}}^2}}{{4{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} + \frac{{\pi D_{{{h_2}}}^2}}{{4{Q_{{{h_2}}}}}}\frac{1}{{{2^3}}}} \right)h - t} \right) + {\lambda_2}(hH - {S_{\rm{T}}}). \end{array}$$
(7.19)

By differentiating L g with respect to \( {D_{{{H_1}}}} \), \( {D_{{{H_2}}}} \), \( {D_{{{h_1}}}} \), \( {D_{{{h_2}}}} \), h, H, \( {\lambda_1} \), and \( {\lambda_2} \), and cancelling the derivatives, we obtain

$$ \left( {a\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} + a\frac{{Q_{{{H_2}}}^n}}{{D_{{{H_2}}}^m}}\frac{1}{{{2^2}}}} \right) + {\lambda_1}\left( {\frac{{\pi D_{{{H_1}}}^2}}{{4{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} + \frac{{\pi D_{{{H_2}}}^2}}{{4{Q_{{{H_2}}}}}}\frac{1}{{{2^2}}}} \right) = - {\lambda_2}h, $$
(7.20a)
$$ \left( {a\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} + a\frac{{Q_{{{h_2}}}^n}}{{D_{{{h_2}}}^m}}\frac{1}{{{2^3}}}} \right) + {\lambda_1}\left( {\frac{{\pi D_{{{h_1}}}^2}}{{4{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} + \frac{{\pi D_{{{h_2}}}^2}}{{4{Q_{{{h_2}}}}}}\frac{1}{{{2^3}}}} \right) = - {\lambda_2}H, $$
(7.20b)
$$ ma\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^{{m + 1}}}}\frac{1}{{{2^1}}} = 2{\lambda_1}\frac{{\pi {D_{{{H_1}}}}}}{{4{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}}, $$
(7.20c)
$$ ma\frac{{Q_{{{H_2}}}^n}}{{D_{{{H_2}}}^{{m + 1}}}}\frac{1}{{{2^2}}} = 2{\lambda_1}\frac{{\pi {D_{{{H_2}}}}}}{{4{Q_{{{H_2}}}}}}\frac{1}{{{2^2}}}, $$
(7.20d)
$$ ma\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^{{m + 1}}}}\frac{1}{{{2^2}}} = 2{\lambda_1}\frac{{\pi {D_{{{h_1}}}}}}{{4{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}}, $$
(7.20e)
$$ ma\frac{{Q_{{{h_2}}}^n}}{{D_{{{h_2}}}^{{m + 1}}}}\frac{1}{{{2^3}}} = 2{\lambda_1}\frac{{\pi {D_{{{h_2}}}}}}{{4{Q_{{{h_2}}}}}}\frac{1}{{{2^3}}}, $$
(7.20f)
$$ \left( {\frac{{D_{{{H_1}}}^2}}{{{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} + \frac{{D_{{{H_2}}}^2}}{{{Q_{{{H_2}}}}}}\frac{1}{{{2^2}}}} \right)H + \left( {\frac{{D_{{{h_1}}}^2}}{{{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} + \frac{{D_{{{h_2}}}^2}}{{{Q_{{{h_2}}}}}}\frac{1}{{{2^3}}}} \right)h = \frac{{4t}}{\pi }, $$
(7.20g)
$$ hH = {S_{\rm{T}}}. $$
(7.20h)

From (7.20c), (7.20d), (7.20e), and (7.20f), one can express \( {\lambda_1} \) as follows:

$$ {\lambda_1} = \frac{{2ma}}{\pi }\frac{{Q_{{{H_i}}}^{{n + 1}}}}{{D_{{{H_i}}}^{{m + 2}}}} = \frac{{2ma}}{\pi }\frac{{Q_{{{h_i}}}^{{n + 1}}}}{{D_{{{h_i}}}^{{m + 2}}}}\quad i = 1,2. $$
(7.21)

By combining terms of (7.21), one can write (given that Q H1/Q h1 = 2, Q H2/Q h2 = 2, and Q h1/Q H2 = 2 because of the symmetry)

$$ \frac{{{D_{{{H_1}}}}}}{{{D_{{{h_1}}}}}} = \frac{{{D_{{{h_1}}}}}}{{{D_{{{H_2}}}}}} = \frac{{{D_{{{H_2}}}}}}{{{D_{{{h_2}}}}}} = {2^{\gamma }}. $$
(7.22)

By introducing these expressions of \( {\lambda_1} \) defined in (7.21), (7.20a), and (7.20b), we obtain

$$ \left\{ \eqalign{ \left( {a + \frac{{ma}}{2}} \right)\left( {\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^2}}} + \frac{{Q_{{{h_2}}}^n}}{{D_{{{h_2}}}^m}}\frac{1}{{{2^3}}}} \right) = - {\lambda_2}H, \hfill \\\left( {a + \frac{{ma}}{2}} \right)\left( {\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}} + \frac{{Q_{{{H_2}}}^n}}{{D_{{{H_2}}}^m}}\frac{1}{{{2^2}}}} \right) = - {\lambda_2}h. \hfill \\}<!endgathered> \right. $$
(7.23)

From (7.23), when we eliminate \( {\lambda_2} \), we can obtain by multiplying the numerator and denominator by the quantity \( {{{D_{{{h_2}}}^m}} \left/ {{Q_{{{h_2}}}^n}} \right.} \)

$$ \left( {\frac{h}{H}} \right) = \frac{{{{\left( {\frac{{{D_{{{h_2}}}}}}{{{D_{{{H_1}}}}}}} \right)}^m}{{\left( {\frac{{{Q_{{{H_1}}}}}}{{{Q_{{{h_2}}}}}}} \right)}^n}\frac{1}{{{2^1}}} + {{\left( {\frac{{{D_{{{h_2}}}}}}{{{D_{{{H_2}}}}}}} \right)}^m}{{\left( {\frac{{{Q_{{{H_2}}}}}}{{{Q_{{{h_2}}}}}}} \right)}^n}\frac{1}{{{2^2}}}}}{{\frac{1}{{{2^3}}} + \frac{1}{{{2^2}}}{{\left( {\frac{{{D_{{h2}}}}}{{{D_{{{h_1}}}}}}} \right)}^m}{{\left( {\frac{{{Q_{{{h_1}}}}}}{{{Q_{{{h_2}}}}}}} \right)}^n}}}. $$
(7.24)

By considering (7.22), we finally obtain

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = \frac{{{2^{{3n - 1 - 3m\gamma }}} + {2^{{n - m\gamma - 2}}}}}{{{2^{{ - 3}}} + {2^{{2n - 2 - 2m\gamma }}}}} = {f_{{{\rm{op}}{{\rm{t}}_2}}}}. $$
(7.25)

By considering (20 h), and (7.25), the expression of H can be obtained:

$$ H = \sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}}. $$
(7.26)

And then

$$ h = {f_{{{\rm{opt}}2}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}}. $$
(7.27)

By multiplying (20 g) by the quantity Q h2/D² h2 we obtain

$$\begin{array}{llll} \left( {\frac{{D_{{{H_1}}}^2}}{{D_{{{h_2}}}^2}}\frac{{{Q_{{{h_2}}}}}}{{{Q_{{{H_1}}}}}}\frac{1}{{{2^1}}} + \frac{{D_{{{H_2}}}^2}}{{D_{{{h_2}}}^2}}\frac{{{Q_{{{h_2}}}}}}{{{Q_{{{H_2}}}}}}\frac{1}{{{2^2}}}} \right)\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}} + \left( {\frac{{D_{{{h_1}}}^2}}{{D_{{{h_2}}}^2}}\frac{{{Q_{{{h_2}}}}}}{{{Q_{{{h_1}}}}}}\frac{1}{{{2^2}}} + \frac{1}{{{2^3}}}} \right){f_{{{\rm{op}}{{\rm{t}}_2}}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}} = \frac{{4t{Q_{{{h_2}}}}}}{{\pi D_{{{h_2}}}^2}}.\end{array}$$
(7.28)

From this, we can write

$$ \left( {{2^{{2 \times 3\gamma - 4}}} + {2^{{2\gamma - 3}}}} \right)\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_{{2}}}}}}} \right)}^{{ - 1}}}}} + \left( {{2^{{2 \times 2\gamma - 4}}} + {2^{{ - 3}}}} \right){f_{{{\rm{opt}}2}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}} = \frac{{4t{Q_{{{h_2}}}}}}{{\pi D_{{{h_2}}}^2}}. $$
(7.29)

And then

$$ {D_{{{h_2}}}} = {\left( {4t{Q_{{{h_2}}}}/\pi } \right)^{{1/2}}}{\Psi_2}^{{ - 1/2}}. $$
(7.30)

We finally obtain D h2, D H1, and D H2 from (7.22) and from (7.30):

$$ {D_{{{H_2}}}} = {2^{\gamma }}{\left( {4t{Q_{{{h_2}}}}/\pi } \right)^{{1/2}}}{\Psi_2}^{{ - 1/2}}, $$
(7.31)
$$ {D_{{{h_1}}}} = {2^{{2\gamma }}}{\left( {4t{Q_{{{h_2}}}}/\pi } \right)^{{1/2}}}{\Psi_2}^{{ - 1/2}}, $$
(7.32)
$$ {D_{{{H_1}}}} = {2^{{3\gamma }}}{\left( {4t{Q_{{{h_2}}}}/\pi } \right)^{{1/2}}}{\Psi_2}^{{ - 1/2}}, $$
(7.33)
$$ {\Psi_2} = \sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_2}}}}} \right)}^{{ - 1}}}}} \left( {\left( {{2^{{2 \times 3\gamma - 4}}} + {2^{{2\gamma - 3}}}} \right) + {f_{{{\rm{op}}{{\rm{t}}_2}}}}\left( {{2^{{2 \times 2\gamma - 4}}} + {2^{{ - 3}}}} \right)} \right). $$
(7.34)

The kth-Order Construct

Consider the situation presented in Fig. 7.2, but taken in a more general form where the network is more and more ramified and has D 0, D 1 until D k . From the dimension h and H, of Fig. 7.3, one can group the pipes into two groups of index h (those in the direction of h) and of index H (those in the direction of H). To understand, see the first and second constructs that are displayed in Figs. 7.1 and 7.2.

In the same way as in previous cases, the Lagrangian function writes

$$ {L_{\rm{g}}} = Ha\sum\limits_{{i = 1}}^k {\frac{{Q_{{{H_i}}}^n}}{{D_{{{H_i}}}^m}}} \frac{1}{{{2^i}}} + ha\sum\limits_{{i = 1}}^k {\frac{{Q_{{{h_i}}}^n}}{{D_{{{h_i}}}^m}}} \frac{1}{{{2^{{i + 1}}}}} + {\lambda_1}\left( {H\sum\limits_{{i = 1}}^k {\frac{{\pi D_{{{H_i}}}^2}}{{4{Q_{{{H_i}}}}}}\frac{1}{{{2^i}}}} + h\sum\limits_{{i = 1}}^k {\frac{{\pi D_{{{h_i}}}^2}}{{4{Q_{{{h_i}}}}}}} \frac{1}{{{2^{{i + 1}}}}} - t} \right) + {\lambda_2}\left( {hH - {S_{\rm{T}}}} \right). $$
(7.35)

Note that k is the number of pipes in direction of H, or in the direction of h. It is important to mention that, in order to facilitate calculus, we did not consider constructions in which there are i pipes in the direction of H and i + 1 pipes in the direction of h (and vice versa). In this view, on the first construction of Fig. 7.1, k = 1 and on the second construction of Fig. 7.2, k = 2.

By differentiating L g with respect to \( {D_{{{h_i}}}} \), \( {D_{{{H_i}}}} \), h, H, \( {\lambda_1} \), and \( {\lambda_2} \), and cancelling all the derivatives, we obtain

$$ ma\frac{{Q_{{{H_i}}}^n}}{{D_{{{H_i}}}^{{m + 1}}}} = 2{\lambda_1}\frac{{\pi {D_{{{H_i}}}}}}{{4{Q_{{{H_i}}}}}}, $$
(7.36a)
$$ ma\frac{{Q_{{{h_i}}}^n}}{{D_{{{h_i}}}^{{m + 1}}}} = 2{\lambda_1}\frac{{\pi {D_{{{h_i}}}}}}{{4{Q_{{{h_i}}}}}}, $$
(7.36b)
$$ a\sum\limits_1^k {\frac{{Q_{{{H_i}}}^n}}{{D_{{{H_i}}}^m}}\frac{1}{{{2^i}}}} + {\lambda_1}\sum\limits_1^k {\frac{{\pi D_{{{H_i}}}^2}}{{4{Q_{{{H_i}}}}}}\frac{1}{{{2^i}}}} = - {\lambda_2}h, $$
(7.36c)
$$ a\sum\limits_1^k {\frac{{Q_{{{h_i}}}^n}}{{D_{{{h_i}}}^m}}\frac{1}{{{2^{{i + 1}}}}}} + {\lambda_1}\sum\limits_1^k {\frac{{\pi D_{{{h_i}}}^2}}{{4{Q_{{{h_i}}}}}}\frac{1}{{{2^{{i + 1}}}}}} = - {\lambda_2}H, $$
(7.36d)
$$ H\sum\limits_1^k {\frac{{D_{{{H_i}}}^2}}{{{Q_{{{H_i}}}}}}\frac{1}{{{2^i}}}} + h\sum\limits_1^k {\frac{{D_{{{h_i}}}^2}}{{{Q_{{{h_i}}}}}}\frac{1}{{{2^{{i + 1}}}}}} = \frac{{4t}}{\pi }, $$
(7.36e)
$$ hH = {S_{\rm{T}}}. $$
(7.36f)

From (7.36a), and (7.36b), we can express \( {\lambda_1} \) as follows:

$$ {\lambda_1} = \frac{{2ma}}{\pi }\frac{{Q_{{{H_1}}}^{{n + 1}}}}{{D_{{{H_1}}}^{{m + 2}}}} = \frac{{2ma}}{\pi }\frac{{Q_{{{H_2}}}^{{n + 1}}}}{{D_{{{H_2}}}^{{m + 2}}}} = \cdots = \frac{{2ma}}{\pi }\frac{{Q_{{{h_1}}}^{{n + 1}}}}{{D_{{{h_1}}}^{{m + 2}}}} = \frac{{2ma}}{\pi }\frac{{Q_{{{h_2}}}^{{n + 1}}}}{{D_{{{h_2}}}^{{m + 2}}}} = \cdots $$
(7.37)

By combining terms of (7.37), we obtain (given that Q H1/Q h1 = 2, Q H2/Q h2 = 2, …, because of the symmetry of the structure)

$$ \frac{{{D_{{{H_1}}}}}}{{{D_{{{h_1}}}}}} = \frac{{{D_{{{h_1}}}}}}{{{D_{{{H_2}}}}}} = \frac{{{D_{{{H_2}}}}}}{{{D_{{{h_2}}}}}} = \frac{{{D_{{{h_2}}}}}}{{{D_{{{H_3}}}}}} = \cdots = \frac{{{D_{{{H_k}}}}}}{{{D_{{{h_k}}}}}} = {2^{\gamma }}. $$
(7.38)

By introducing the expressions of \( {\lambda_1} \) (defined in (7.37), (7.36c), and (7.36d)), we obtain

$$ \left( {a + \frac{{ma}}{2}} \right)\sum\limits_1^k {\frac{{Q_{{{H_i}}}^n}}{{D_{{{H_i}}}^m}}\frac{1}{{{2^i}}}} = - {\lambda_2}h, $$
(7.39)
$$ \left( {a + \frac{{ma}}{2}} \right)\sum\limits_1^k {\frac{{Q_{{{h_i}}}^n}}{{D_{{{h_i}}}^m}}\frac{1}{{{2^{{i + 1}}}}}} = - {\lambda_2}H. $$
(7.40)

By dividing member by member, the terms of (7.39) and (7.40), we obtain

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = \frac{{\sum\limits_1^k {\frac{{Q_{{{H_i}}}^n}}{{D_{{{H_i}}}^m}}\frac{1}{{{2^i}}}} }}{{\sum\limits_1^k {\frac{{Q_{{{h_i}}}^n}}{{D_{{{h_i}}}^m}}\frac{1}{{{2^{{i + 1}}}}}} }}. $$
(7.41)

By multiplying both the numerator and denominator of (7.41) by the quantity \( {D_{{{h_k}}}}^m/{Q_{{{h_k}}}}^n \), as follows

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = \frac{{\frac{{Q_{{{H_1}}}^n}}{{D_{{{H_1}}}^m}}\frac{1}{{{2^1}}}\frac{{D_{{{h_k}}}^m}}{{Q_{{{h_k}}}^n}} + \cdots + \frac{{Q_{{{H_k}}}^n}}{{D_{{{H_k}}}^m}}\frac{1}{{{2^k}}}\frac{{D_{{{h_k}}}^m}}{{Q_{{{h_k}}}^n}}}}{{\frac{{Q_{{{h_1}}}^n}}{{D_{{{h_1}}}^m}}\frac{1}{{{2^{{1 + 1}}}}}\frac{{D_{{{h_k}}}^m}}{{Q_{{{h_k}}}^n}} + \cdots + \frac{{Q_{{{h_k}}}^n}}{{D_{{{h_k}}}^m}}\frac{1}{{{2^{{k + 1}}}}}\frac{{D_{{{h_k}}}^m}}{{Q_{{{h_k}}}^n}}}}, $$
(7.42)

and by taking into account (7.38), we obtain

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = \frac{{\sum\limits_{{i = 1}}^k {{2^{{\left( {2k - \left( {2i - 1} \right)} \right)n - m\left( {2k - \left( {2i - 1} \right)} \right)\gamma - i}}}} }}{{\sum\limits_{{i = 1}}^k {{2^{{\left( {2k - \left( {2i} \right)} \right)n - m\left( {2k - \left( {2i} \right)} \right)\gamma - \left( {i + 1} \right)}}}} }} = f{}_{{{\rm{op}}{{\rm{t}}_k}}}. $$
(7.43)

Verifications

Construction 1: k = 1 leads to

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = {2^{{n + 1 - m{ }\gamma }}}. $$
(7.44)

Construction 2: k = 2 leads to

$$ {\left( {\frac{h}{H}} \right)_{\rm{opt}}} = \frac{{{2^{{3n - 1 - 3m\gamma }}} + {2^{{n - 2 - m\gamma }}}}}{{{2^{{2n - 2 - 2m\gamma }}} + {2^{{ - 3}}}}}. $$
(7.45)

By posing that \( {\left( {{{h} \left/ {H} \right.}} \right)_{\rm{opt}}} = {f_{{{\rm{op}}{{\rm{t}}_k}}}} \), we obtain from (7.43) and from (7.36f) the expressions of H and h as follows:

$$ H = \sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_k}}}}} \right)}^{{ - 1}}}}}, $$
(7.46)
$$ h = {f_{{{\rm{op}}{{\rm{t}}_k}}}}\sqrt {{{S_{\rm{T}}}{{\left( {{f_{{{\rm{op}}{{\rm{t}}_k}}}}} \right)}^{{ - 1}}}}}. $$
(7.47)

In order to make \( {Q_{{{h_k}}}}/{Q_{{{H_i}}}},\;{Q_{{{h_k}}}}/{Q_{{{h_i}}}},\;{D_{{{H_i}}}}/{D_{{{h_k}}}} \) and \( {D_{{{h_i}}}}/{D_{{{h_k}}}} \) appear, we multiply (7.36e) by \( {Q_{{{h_k}}}}/D_{{{h_k}}}^2 \), and we obtain

$$ \sqrt {{\frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_k}}}}}}}} \sum\limits_{{i = 1}}^k {\frac{{D_{{{H_i}}}^2}}{{D_{{{h_k}}}^2}}\frac{{{Q_{{{h_k}}}}}}{{{Q_{{{H_i}}}}}}\frac{1}{{{2^i}}}} + {f_{{{\rm{op}}{{\rm{t}}_k}}}}\sqrt {{\frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_k}}}}}}}} \sum\limits_{{i = 1}}^k {\frac{{D_{{{h_i}}}^2}}{{D_{{{h_k}}}^2}}\frac{{{Q_{{{h_k}}}}}}{{{Q_{{{h_i}}}}}}} \frac{1}{{{2^{{i + 1}}}}} = \frac{{4t{Q_{{{h_k}}}}}}{{\pi D_{{{h_k}}}^2}}. $$
(7.48)

Noting that

$$ \frac{{D_{{{H_i}}}^2}}{{D_{{{h_k}}}^2}} = \left( {\frac{{D_{{{H_i}}}^2}}{{D_{{{h_i}}}^2}} \times \frac{{D_{{{h_i}}}^2}}{{D_{{{H_{{i + 1}}}}}^2}} \times \cdots \times \frac{{D_{{{h_{{k - 1}}}}}^2}}{{D_{{{H_k}}}^2}} \times \frac{{D_{{{H_k}}}^2}}{{D_{{{h_k}}}^2}}} \right) = {2^{{2\left( {2\left( {k - i} \right) + 1} \right)\gamma }}}, $$
(7.49)
$$ \frac{{D_{{{h_i}}}^2}}{{D_{{{h_k}}}^2}} = \frac{{D_{{{h_i}}}^2}}{{D_{{{H_{{i + 1}}}}}^2}} \times \frac{{D_{{{H_{{i + 1}}}}}^2}}{{D_{{{h_{{i + 1}}}}}^2}} \times \cdots \times \frac{{D_{{{h_{{k - 1}}}}}^2}}{{D_{{{H_k}}}^2}} \times \frac{{D_{{{H_k}}}^2}}{{D_{{{h_k}}}^2}} = {2^{{2\left( {2\left( {k - i} \right)} \right)\gamma }}}, $$
(7.50)
$$ \frac{{{Q_{{{H_i}}}}}}{{{Q_{{{h_k}}}}}} = \frac{{{Q_{{{H_i}}}}}}{{{Q_{{{h_i}}}}}} \times \frac{{{Q_{{{h_i}}}}}}{{{Q_{{{H_{{i + 1}}}}}}}} \times \cdots \times \frac{{{Q_{{{h_{{k - 1}}}}}}}}{{{Q_{{Hk}}}}} \times \frac{{{Q_{{Hk}}}}}{{{Q_{{{h_k}}}}}} = {2^{{2\left( {k - i} \right) + 1}}}, $$
(7.51)

and

$$ \frac{{{Q_{{{h_i}}}}}}{{{Q_{{{h_k}}}}}} = \frac{{{Q_{{{h_i}}}}}}{{{Q_{{{H_{{i + 1}}}}}}}} \times \frac{{{Q_{{{H_{{i + 1}}}}}}}}{{{Q_{{{h_{{i + 1}}}}}}}} \times \cdots \times \frac{{{Q_{{{h_{{k - 1}}}}}}}}{{{Q_{{{H_k}}}}}} \times \frac{{{Q_{{{H_k}}}}}}{{{Q_{{{h_k}}}}}} = {2^{{2\left( {k - i} \right)}}}, $$
(7.52)

equation (7.48) can be rewritten as follows:

$$\begin{array}{llll} \sqrt {{\frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_k}}}}}}}} \sum\limits_{{i = 1}}^k {{2^{{2\left( {2\left( {k - i} \right) + 1} \right)\gamma - \left( {2\left( {k - i} \right) + 1} \right) - i}}}} + {f_{{{\rm{op}}{{\rm{t}}_k}}}}\sqrt {{\frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_k}}}}}}}} \sum\limits_{{i = 1}}^k {{2^{{2\left( {2\left( {k - i} \right)} \right)\gamma - \left( {2\left( {k - i} \right)} \right) - \left( {i + 1} \right)}}}} = \frac{{4t{Q_{{{h_k}}}}}}{{\pi D_{{{h_k}}}^2}}.\end{array}$$
(7.53)

From this, we finally obtain

$$ {D_{{{h_k}}}} = {\left( {4t{Q_{{{h_k}}}}/\pi } \right)^{{1/2}}}{\Psi_k}^{{ - 1/2}}, $$
(7.54)

where

$$ {\Psi_k} = \sqrt {{\frac{{{S_{\rm{T}}}}}{{{f_{{{\rm{op}}{{\rm{t}}_k}}}}}}}} \left( {\sum\limits_{{i = 1}}^k {{2^{{2\left( {2\left( {k - i} \right) + 1} \right)\gamma - \left( {2\left( {k - i} \right) + 1} \right) - i}}}} + {f_{{{\rm{op}}{{\rm{t}}_k}}}}\sum\limits_{{i = 1}}^k {{2^{{2\left( {2\left( {k - i} \right)} \right)\gamma - \left( {2\left( {k - i} \right)} \right) - \left( {i + 1} \right)}}}} } \right). $$
(7.55)

Then, considering (7.38), and for any j ranging from 1 to k, we obtain

$$ {D_h}_{{_j}} = {2^{{2\left( {k - j} \right)\gamma }}}{\left( {4t{Q_{{{h_k}}}}/\pi } \right)^{{1/2}}}{\Psi_k}^{{ - 1/2}} $$
(7.56)

and

$$ {D_H}_{{_j}} = {2^{{\left( {2\left( {k - j} \right) + 1} \right)\gamma }}}{\left( {4t{Q_{{{h_k}}}}/\pi } \right)^{{1/2}}}{\Psi_k}^{{ - 1/2}}. $$
(7.57)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bieupoude, P., Azoumah, Y., Neveu, P. (2013). Constructal Design of T-Shaped Water Distribution Networks. In: Rocha, L., Lorente, S., Bejan, A. (eds) Constructal Law and the Unifying Principle of Design. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5049-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5049-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5048-1

  • Online ISBN: 978-1-4614-5049-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics