Constructal Design of Vortex Tubes

  • E. D. dos Santos
  • C. H. Marques
  • G. Stanescu
  • L. A. Isoldi
  • L. A. O. Rocha
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

The vortex tube (also known as Ranque-Hilsch vortex tube) is a mechanical device which splits a compressed high-pressure gas stream into cold and hot lower pressure streams without any chemical reactions or external energy supply [1–3]. Such a separation of the flow into regions of low and high total temperature is referred to as the temperature (or energy) separation effect. The device consists of a simple circular tube, one or more tangential nozzles, and a throttle valve. Figure 15.1 depicts schematically two types of vortex tubes: Counter flow (Fig. 15.1a) and parallel flow (Fig. 15.1b). The operational principle of a counter flow vortex tube, which is the scope of the present work, Fig. 15.1a, consists of a high-pressure gas that enters the vortex tube and passes through the nozzle(s). The gas expands through the nozzle and achieves a high angular velocity, causing a vortex-type flow in the tube. There are two exits: the hot exit that is placed near the outer radius of the tube at the end away from the nozzle and the cold exit that is placed at the center of the tube at the same end as the nozzle. By adjusting a throttle valve (cone valve) downstream of the hot exit it is possible to vary the fraction of the incoming flow that leaves through the cold exit, referred as cold fraction. This adjustment affects the amount of cold and hot energy that leaves the vortex tube in the device exits.

Keywords

Vortex Methane Migration Helium Explosive 

References

  1. 1.
    Ranque GJ. Expériences sur la détente giratoire avec productions simultanées d’um échappement d’air chaud et d’um échappement d’air froid. J Phys Radium. 1933;4:112S–5. United States Patent No. 1,952,281 (1934).Google Scholar
  2. 2.
    Hilsch R. The use of the expansion of gases in a centrifugal field as a cooling process. Rev Sci Instrum. 1947;18:108–13.CrossRefGoogle Scholar
  3. 3.
    Eiamsa-ard S, Promvonge P. Review of Ranque–Hilsch effects in vortex tubes. Renew Sust Energ Rev. 2008;12:1822–42.CrossRefGoogle Scholar
  4. 4.
    Fin’ko VE. Cooling and condensation of a gas in a vortex flow. Sov Phys Tech Phys. 1983; 28(9):1089–93Google Scholar
  5. 5.
    Bruno TJ. Applications of the vortex tube in chemical analysis Part I: introductory principle. Am Lab. 1993;25:15–20.Google Scholar
  6. 6.
    Kirmaci V. Exergy analysis and performance of a counter flow Ranque–Hilsch vortex tube having various nozzle numbers at different inlet pressures of oxygen and air. Int J Refrig. 2009;32:1626–33.CrossRefGoogle Scholar
  7. 7.
    Dutta T, Sinhamahapatra KP, Bandyopdhyay SS. Comparison of different turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube. Int J Refrig. 2010;33(4):783–92.CrossRefGoogle Scholar
  8. 8.
    Lewis J, Bejan A. Vortex tube optimization theory. Energy. 1999;24:931–43.CrossRefGoogle Scholar
  9. 9.
    Harnett JP, Eckert ERG. Experimental study of the velocity and temperature distribution in a high-velocity vortex-type flow. Trans ASME. 1957;79(4):751–8.Google Scholar
  10. 10.
    Stephan K, Lin S, Durst M, Huang F, Seher D. An investigation of energy separation in a vortex tube. Int J Heat Mass Tran. 1983;26(3):341–8.CrossRefGoogle Scholar
  11. 11.
    Ahlborn B, Groves S. Secondary flow in a vortex tube. Fluid Dyn Res. 1997;21:73–86.CrossRefGoogle Scholar
  12. 12.
    Schlenz D. Kompressible strahlgetriebene drallstromung in rotationssymmetrischen kanalen. Ph.D thesis, Technische Fakultat Universtitat: Erlangen–Nurnberg; 1982Google Scholar
  13. 13.
    Cockerill. Thermodynamics and fluid mechanics of a Ranque–Hilsch vortex tube. Master thesis, University of Cambridge: England; 1995Google Scholar
  14. 14.
    Aljuwayhel NF, Nellis GF, Klein SA. Parametric and internal study of the vortex tube using a CFD model. Int J Refrig. 2005;28:442–50.CrossRefGoogle Scholar
  15. 15.
    Farouk T, Farouk B. Large eddy simulations of the flow field and temperature separation in the Ranque-Hilsch vortex tube. Int J Heat Mass Trans. 2007;50:4724–35.MATHCrossRefGoogle Scholar
  16. 16.
    Skye HM, Nellis GF, Klein SA. Comparison of CFD analysis to empirical data in a commercial vortex tube. Int J Refrig. 2006;29:71–80.CrossRefGoogle Scholar
  17. 17.
    Promvonge P, Eiamsa-ard S. Investigation on the vortex termal separation in a vortex tube refrigerator. ScienceAsia. 2005;31(3):215–23.CrossRefGoogle Scholar
  18. 18.
    Aydin O, Baki M. An experimental study on the design parameters of a counter flow vortex tube. Energy. 2006;31(14):2763–72.CrossRefGoogle Scholar
  19. 19.
    Pinar AM, Uluer O, Kirmaci V. Optimization of conter flow Ranque–Hilsch vortex tube performance using Taguchi method. Int J Refrig. 2009;32(6):1487–94.CrossRefGoogle Scholar
  20. 20.
    Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University Press; 2000.MATHGoogle Scholar
  21. 21.
    Bejan A, Lorente S. Design with constructal theory. New York: John Wiley and Sons Inc; 2008.CrossRefGoogle Scholar
  22. 22.
    Bejan A, Lorente S. Constructal theory of generation of configuration in nature and engineering. J Appl Phys. 2006;100:041301.CrossRefGoogle Scholar
  23. 23.
    Beyene A, Peffley J. Constructal theory, adaptive motion, and their theoretical application to low-speed turbine design. J Ener Eng-ASCE. 2009;135(4):112–8.CrossRefGoogle Scholar
  24. 24.
    Kim Y, Lorente S, Bejan A. Constructal multi-tube configuration for natural and forced convection in cross-flow. Int J Heat Mass Tran. 2010;53:5121–8.MATHCrossRefGoogle Scholar
  25. 25.
    Kim Y, Lorente S, Bejan A. Steam generator structure: continuous model and constructal design. Int J Energ Res. 2011;35:336–45.CrossRefGoogle Scholar
  26. 26.
    Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011;36:1087–96.CrossRefGoogle Scholar
  27. 27.
    FLUENT (version 6.3.16). ANSYS Inc; 2007Google Scholar
  28. 28.
    Bejan A. Convection heat transfer. Durhan: Jhon Wiley; 2004.Google Scholar
  29. 29.
    Launder AE, Spalding DB. Lectures in mathematical models of turbulence. London: Academic; 1972.MATHGoogle Scholar
  30. 30.
    Wilcox AC. Turbulence modeling for CFD. La Canada: DCW Industries; 2002.Google Scholar
  31. 31.
    Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw Hill; 1980.MATHGoogle Scholar
  32. 32.
    Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics – the finite volume method. England: Longman; 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. D. dos Santos
    • 1
  • C. H. Marques
    • 1
  • G. Stanescu
    • 2
  • L. A. Isoldi
    • 1
  • L. A. O. Rocha
    • 3
  1. 1.Escola de Engenharia (EE), Universidade Federal de Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Departamento de Engenharia MecânicaCentro Politécnico, Universidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de Engenharia Mecânica (DEMEC)Universidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations