Advertisement

Helicases at the Replication Fork

  • Peter McGlynn
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)

Abstract

Helicases are fundamental components of all replication complexes since unwinding of the double-stranded template to generate single-stranded DNA is essential to direct DNA synthesis by polymerases. However, helicases are also required in many other steps of DNA replication. Replicative helicases not only unwind the template DNA but also play key roles in regulating priming of DNA synthesis and coordination of leading and lagging strand DNA polymerases. Accessory helicases also aid replicative helicases in unwinding of the template strands in the presence of proteins bound to the DNA, minimising the risks posed by nucleoprotein complexes to continued fork movement. Helicases also play critical roles in Okazaki fragment processing in eukaryotes and may also be needed to minimise topological problems when replication forks converge. Thus fork movement, coordination of DNA synthesis, lagging strand maturation and termination of replication all depend on helicases. Moreover, if disaster strikes and a replication fork breaks down then reloading of the replication machinery is effected by helicases, at least in bacteria. This chapter describes how helicases function in these multiple steps at the fork and how DNA unwinding is coordinated with other catalytic processes to ensure efficient, high fidelity duplication of the genetic material in all organisms.

Keywords

Replication Fork Helicase Activity Strand Template Steric Exclusion Okazaki Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Patel SS, Pandey M, Nandakumar D. Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol. 2011;15:595–605.PubMedCrossRefGoogle Scholar
  3. 3.
    Mok M, Marians KJ. The Escherichia coli preprimosome and DnaB helicase can form replication forks that move at the same rate. J Biol Chem. 1987;262:16644–54.PubMedGoogle Scholar
  4. 4.
    Tanner NA, Loparo JJ, Hamdan SM, Jergic S, Dixon NE, van Oijen AM. Real-time single-molecule observation of rolling-circle DNA replication. Nucleic Acids Res. 2009;37:e27.PubMedCrossRefGoogle Scholar
  5. 5.
    Yao NY, Georgescu RE, Finkelstein J, O’Donnell ME. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci USA. 2009;106:13236–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA ­unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid ­quench-flow method. J Mol Biol. 2004;343:83–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Singleton MR, Sawaya MR, Ellenberger T, Wigley DB. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell. 2000;101:589–600.PubMedCrossRefGoogle Scholar
  8. 8.
    Benkovic SJ, Valentine AM, Salinas F. Replisome-mediated DNA replication. Annu Rev Biochem. 2001;70:181–208.PubMedCrossRefGoogle Scholar
  9. 9.
    Korhonen JA, Gaspari M, Falkenberg M. TWINKLE has 5′ -> 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem. 2003;278:48627–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Hacker KJ, Johnson KA. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry. 1997;36:14080–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ahnert P, Patel SS. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J Biol Chem. 1997;272:32267–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Jezewska MJ, Rajendran S, Bujalowska D, Bujalowski W. Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB Helicase? Fluorescence energy transfer studies. J Biol Chem. 1998;273:10515–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Jezewska MJ, Rajendran S, Bujalowski W. Complex of Escherichia coli primary replicative helicase DnaB protein with a replication fork: recognition and structure. Biochemistry. 1998;37:3116–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaplan DL. The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J Mol Biol. 2000;301:285–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J Mol Biol. 2004;343:101–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA. 2000;97:1530–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA. 2006;103:10236–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Neuwald AF, Aravind L, Spouge JL, Koonin EV. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999;9:27–43.PubMedGoogle Scholar
  19. 19.
    Takahashi TS, Wigley DB, Walter JC. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci. 2005;30:437–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Evrin C, Clarke P, Zech J, et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci USA. 2009;106:20240–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Kaplan DL, Davey MJ, O’Donnell M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem. 2003;278:49171–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Fu YV, Yardimci H, Long DT, et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell. 2011;146:931–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Graham BW, Schauer GD, Leuba SH, Trakselis MA. Steric exclusion and wrapping of the excluded DNA strand occurs along discrete external binding paths during MCM helicase unwinding. Nucleic Acids Res. 2011;39:6585–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaplan DL, O’Donnell M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol Cell. 2002;10:647–57.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaplan DL, O’Donnell M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol Cell. 2004;15:453–65.PubMedCrossRefGoogle Scholar
  27. 27.
    Gupta MK, Atkinson J, McGlynn P. DNA structure specificity conferred on a replicative helicase by its loader. J Biol Chem. 2010;285:979–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Soultanas P. Loading mechanisms of ring helicases at replication origins. Mol Microbiol. 2012;84(1):6–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaguni JM. DnaA: controlling the initiation of bacterial DNA replication and more. Annu Rev Microbiol. 2006;60:351–75.PubMedCrossRefGoogle Scholar
  30. 30.
    Mott ML, Berger JM. DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol. 2007;5:343–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol. 2010;8:163–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Speck C, Messer W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J. 2001;20:1469–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Sutton MD, Carr KM, Vicente M, Kaguni JM. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem. 1998;273:34255–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Duderstadt KE, Chuang K, Berger JM. DNA stretching by bacterial initiators promotes replication origin opening. Nature. 2011;478:209–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Bramhill D, Kornberg A. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell. 1988;52:743–55.PubMedCrossRefGoogle Scholar
  36. 36.
    Kowalski D, Eddy MJ. The DNA unwinding element: a novel, cis-acting component that facilitates opening of the Escherichia coli replication origin. EMBO J. 1989;8:4335–44.PubMedGoogle Scholar
  37. 37.
    Soni RK, Mehra P, Mukhopadhyay G, Dhar SK. Helicobacter pylori DnaB helicase can bypass E. coli DnaC function in vivo. Biochem J. 2005;389:541–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Fang L, Davey MJ, O’Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol Cell. 1999;4:541–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson A, O’Donnell M. Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem. 2005;74:283–315.PubMedCrossRefGoogle Scholar
  40. 40.
    Bowers JL, Randell JC, Chen S, Bell SP. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell. 2004;16:967–78.PubMedCrossRefGoogle Scholar
  41. 41.
    Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21:771–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Gambus A, Jones RC, Sanchez-Diaz A, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8:358–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24:1208–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell. 2010;40:834–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005;19:1905–19.PubMedCrossRefGoogle Scholar
  46. 46.
    Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell. 2006;21:581–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Bochman ML, Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol Cell. 2008;31:287–93.PubMedCrossRefGoogle Scholar
  49. 49.
    Costa A, Ilves I, Tamberg N, et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol. 2011;18:471–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim S, Dallmann HG, McHenry CS, Marians KJ. Coupling of a replicative polymerase and helicase: a t-DnaB interaction mediates rapid replication fork movement. Cell. 1996;84:643–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Gao D, McHenry CS. Tau binds and organizes Escherichia coli replication proteins through distinct domains. Domain IV, located within the unique C terminus of tau, binds the replication fork, helicase, DnaB. J Biol Chem. 2001;276:4441–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Gao D, McHenry CS. t binds and organizes Escherichia coli replication through distinct domains. Partial proteolysis of terminally tagged t to determine candidate domains and to assign domain V as the a binding domain. J Biol Chem. 2001;276:4433–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Notarnicola SM, Mulcahy HL, Lee J, Richardson CC. The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J Biol Chem. 1997;272:18425–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Delagoutte E, von Hippel PH. Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry. 2001;40:4459–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee SJ, Marintcheva B, Hamdan SM, Richardson CC. The C-terminal residues of bacteriophage T7 gene 4 helicase-primase coordinate helicase and DNA polymerase activities. J Biol Chem. 2006;281:25841–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature. 2005;435:370–3.PubMedCrossRefGoogle Scholar
  57. 57.
    Ishmael FT, Trakselis MA, Benkovic SJ. Protein-protein interactions in the bacteriophage T4 replisome. The leading strand holoenzyme is physically linked to the lagging strand holoenzyme and the primosome. J Biol Chem. 2003;278:3145–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23:2423–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hamdan SM, Johnson DE, Tanner NA, et al. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol Cell. 2007;27:539–49.PubMedCrossRefGoogle Scholar
  60. 60.
    Tanner NA, Hamdan SM, Jergic S, Schaeffer PM, Dixon NE, van Oijen AM. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol. 2008;15:170–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 2003;17:1153–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon), and GINS in budding yeast. Genes Dev. 2010;24:602–12.PubMedCrossRefGoogle Scholar
  63. 63.
    Sun B, Johnson DS, Patel G, et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature. 2011;478:132–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Studwell-Vaughan PS, O’Donnell M. Constitution of the twin polymerase of DNA polymerase III holoenzyme. J Biol Chem. 1991;266:19833–41.PubMedGoogle Scholar
  65. 65.
    McInerney P, Johnson A, Katz F, O’Donnell M. Characterization of a triple DNA polymerase replisome. Mol Cell. 2007;27:527–38.PubMedCrossRefGoogle Scholar
  66. 66.
    Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010;328:498–501.PubMedCrossRefGoogle Scholar
  67. 67.
    Yeeles JT, Marians KJ. The Escherichia coli replisome is inherently DNA damage tolerant. Science. 2011;334:235–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Lu YB, Ratnakar PV, Mohanty BK, Bastia D. Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc Natl Acad Sci USA. 1996;93:12902–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Biswas EE, Biswas SB. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochemistry. 1999;38:10919–28.PubMedCrossRefGoogle Scholar
  70. 70.
    Oakley AJ, Loscha KV, Schaeffer PM, et al. Crystal and solution structures of the helicase-binding domain of Escherichia coli primase. J Biol Chem. 2005;280:11495–504.PubMedCrossRefGoogle Scholar
  71. 71.
    Bird LE, Pan H, Soultanas P, Wigley DB. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearothermophilus. Biochemistry. 2000;39:171–82.PubMedCrossRefGoogle Scholar
  72. 72.
    Thirlway J, Turner IJ, Gibson CT, et al. DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Res. 2004;32:2977–86.PubMedCrossRefGoogle Scholar
  73. 73.
    Norcum MT, Warrington JA, Spiering MM, Ishmael FT, Trakselis MA, Benkovic SJ. Architecture of the bacteriophage T4 primosome: electron microscopy studies of helicase (gp41) and primase (gp61). Proc Natl Acad Sci USA. 2005;102:3623–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Toth EA, Li Y, Sawaya MR, Cheng Y, Ellenberger T. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol Cell. 2003;12:1113–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD. GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep. 2006;7:539–45.PubMedGoogle Scholar
  76. 76.
    De Falco M, Ferrari E, De Felice M, Rossi M, Hubscher U, Pisani FM. The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep. 2007;8:99–103.PubMedCrossRefGoogle Scholar
  77. 77.
    Valentine AM, Ishmael FT, Shier VK, Benkovic SJ. A zinc ribbon protein in DNA replication: primer synthesis and macromolecular interactions by the bacteriophage T4 primase. Biochemistry. 2001;40:15074–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Corn JE, Berger JM. Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res. 2006;34(15):4082–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Bailey S, Eliason WK, Steitz TA. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science. 2007;318:459–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Bhattacharyya S, Griep MA. DnaB helicase affects the initiation specificity of Escherichia coli primase on single-stranded DNA templates. Biochemistry. 2000;39:745–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Johnson SK, Bhattacharyya S, Griep MA. DnaB helicase stimulates primer synthesis activity on short oligonucleotide templates. Biochemistry. 2000;39:736–44.PubMedCrossRefGoogle Scholar
  82. 82.
    Corn JE, Pease PJ, Hura GL, Berger JM. Crosstalk between primase subunits can act to regulate primer synthesis in trans. Mol Cell. 2005;20:391–401.PubMedCrossRefGoogle Scholar
  83. 83.
    Yancey-Wrona JE, Matson SW. Bound Lac repressor protein differentially inhibits the unwinding reactions catalyzed by DNA helicases. Nucleic Acids Res. 1992;20:6713–21.PubMedCrossRefGoogle Scholar
  84. 84.
    Mackintosh SG, Raney KD. DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res. 2006;34:4154–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Trautinger BW, Jaktaji RP, Rusakova E, Lloyd RG. RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. Mol Cell. 2005;19:247–58.PubMedCrossRefGoogle Scholar
  86. 86.
    Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009;34:722–34.PubMedCrossRefGoogle Scholar
  87. 87.
    Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9:204–17.PubMedCrossRefGoogle Scholar
  88. 88.
    Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 2009;37:3475–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Blow JJ, Ge XQ. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep. 2009;10:406–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Kawabata T, Luebben SW, Yamaguchi S, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41:543–53.PubMedCrossRefGoogle Scholar
  91. 91.
    Jacome A, Fernandez-Capetillo O. Lac operator repeats generate a traceable fragile site in mammalian cells. EMBO Rep. 2011;12:1032–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Klein IA, Resch W, Jankovic M, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011;147:95–106.PubMedCrossRefGoogle Scholar
  93. 93.
    Chiarle R, Zhang Y, Frock RL, et al. Genome-wide translocation sequencing reveals ­mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147:107–19.PubMedCrossRefGoogle Scholar
  94. 94.
    Byrd AK, Raney KD. Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA. Nat Struct Mol Biol. 2004;11:531–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Bonne-Andrea C, Wong ML, Alberts BM. In vitro replication through nucleosomes without histone displacement. Nature. 1990;343:719–26.PubMedCrossRefGoogle Scholar
  96. 96.
    Guy CP, Atkinson J, Gupta MK, et al. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell. 2009;36:654–66.PubMedCrossRefGoogle Scholar
  97. 97.
    Boubakri H, de Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 2010;29(1):145–57.PubMedCrossRefGoogle Scholar
  98. 98.
    Atkinson J, Gupta MK, Rudolph CJ, Bell H, Lloyd RG, McGlynn P. Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication. Nucleic Acids Res. 2011;39:949–57.PubMedCrossRefGoogle Scholar
  99. 99.
    Atkinson J, Gupta MK, McGlynn P. Interaction of Rep and DnaB on DNA. Nucleic Acids Res. 2011;39:1351–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Uzest M, Ehrlich SD, Michel B. Lethality of rep recB and rep recC double mutants of Escherichia coli. Mol Microbiol. 1995;17:1177–88.PubMedCrossRefGoogle Scholar
  101. 101.
    Seigneur M, Bidnenko V, Ehrlich SD, Michel B. RuvAB acts at arrested replication forks. Cell. 1998;95:419–30.PubMedCrossRefGoogle Scholar
  102. 102.
    Lane HE, Denhardt DT. The rep mutation. IV. Slower movement of replication forks in Escherichia coli rep strains. J Mol Biol. 1975;97:99–112.PubMedCrossRefGoogle Scholar
  103. 103.
    Smith KR, Yancey JE, Matson SW. Identification and purification of a protein that stimulates the helicase activity of the Escherichia coli Rep protein. J Biol Chem. 1989;264:6119–26.PubMedGoogle Scholar
  104. 104.
    Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 2010;6:e1001238.PubMedCrossRefGoogle Scholar
  105. 105.
    Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 2002;16:1383–96.PubMedCrossRefGoogle Scholar
  106. 106.
    Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell. 2003;12:1525–36.PubMedCrossRefGoogle Scholar
  107. 107.
    Keil RL, McWilliams AD. A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics. 1993;135:711–8.PubMedGoogle Scholar
  108. 108.
    Schmidt KH, Kolodner RD. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol. 2004;24:3213–26.PubMedCrossRefGoogle Scholar
  109. 109.
    Torres JZ, Schnakenberg SL, Zakian VA. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol. 2004;24:3198–212.PubMedCrossRefGoogle Scholar
  110. 110.
    Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 2006;20:3104–16.PubMedCrossRefGoogle Scholar
  111. 111.
    Schmidt KH, Derry KL, Kolodner RD. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem. 2002;277:45331–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Moolenaar GF, Moorman C, Goosen N. Role of the Escherichia coli nucleotide excision repair proteins in DNA replication. J Bacteriol. 2000;182:5706–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem. 2009;284:9612–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM. Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 2004;18:2764–73.PubMedCrossRefGoogle Scholar
  115. 115.
    Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature. 2001;412:456–61.PubMedCrossRefGoogle Scholar
  116. 116.
    Bae SH, Seo YS. Characterization of the enzymatic properties of the yeast dna2 Helicase/endonuclease suggests a new model for Okazaki fragment processing. J Biol Chem. 2000;275:38022–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Kao HI, Campbell JL, Bambara RA. Dna2p helicase/nuclease is a tracking protein, like FEN1, for flap cleavage during Okazaki fragment maturation. J Biol Chem. 2004;279:50840–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Balakrishnan L, Polaczek P, Pokharel S, Campbell JL, Bambara RA. Dna2 exhibits a unique strand end-dependent helicase function. J Biol Chem. 2010;285:38861–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Kao HI, Veeraraghavan J, Polaczek P, Campbell JL, Bambara RA. On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J Biol Chem. 2004;279:15014–24.PubMedCrossRefGoogle Scholar
  120. 120.
    Budd ME, Reis CC, Smith S, Myung K, Campbell JL. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol Cell Biol. 2006;26:2490–500.PubMedCrossRefGoogle Scholar
  121. 121.
    Lahaye A, Stahl H, Thines-Sempoux D, Foury F. PIF1: a DNA helicase in yeast mitochondria. EMBO J. 1991;10:997–1007.PubMedGoogle Scholar
  122. 122.
    Bochman ML, Sabouri N, Zakian VA. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst). 2010;9:237–49.CrossRefGoogle Scholar
  123. 123.
    Rossi ML, Pike JE, Wang W, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J Biol Chem. 2008;283:27483–93.PubMedCrossRefGoogle Scholar
  124. 124.
    Pike JE, Burgers PM, Campbell JL, Bambara RA. Pif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway. J Biol Chem. 2009;284:25170–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Pike JE, Henry RA, Burgers PM, Campbell JL, Bambara RA. An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J Biol Chem. 2010;285:41712–23.PubMedCrossRefGoogle Scholar
  126. 126.
    Ribeyre C, Lopes J, Boule JB, et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475.PubMedCrossRefGoogle Scholar
  127. 127.
    Sanders CM. Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J. 2010;430:119–28.PubMedCrossRefGoogle Scholar
  128. 128.
    Paeschke K, Capra JA, Zakian VA. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 2011;145:678–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Minden JS, Marians KJ. Escherichia coli topoisomerase I can segregate replicating pBR322 daughter DNA molecules in vitro. J Biol Chem. 1986;261:11906–17.PubMedGoogle Scholar
  130. 130.
    Rothstein R, Gangloff S. Hyper-recombination and Bloom’s syndrome: microbes again provide clues about cancer. Genome Res. 1995;5:421–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Suski C, Marians KJ. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell. 2008;30:779–89.PubMedCrossRefGoogle Scholar
  132. 132.
    Nurse P, Levine C, Hassing H, Marians KJ. Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem. 2003;278:8653–60.PubMedCrossRefGoogle Scholar
  133. 133.
    Butland G, Peregrin-Alvarez JM, Li J, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005;433:531–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Shereda RD, Bernstein DA, Keck JL. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 2007;282:19247–58.PubMedCrossRefGoogle Scholar
  135. 135.
    Nadal M. Reverse gyrase: an insight into the role of DNA-topoisomerases. Biochimie. 2007;89:447–55.PubMedCrossRefGoogle Scholar
  136. 136.
    Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007;71:13–35.PubMedCrossRefGoogle Scholar
  137. 137.
    Higuchi K, Katayama T, Iwai S, Hidaka M, Horiuchi T, Maki H. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes Cells. 2003;8:437–49.PubMedCrossRefGoogle Scholar
  138. 138.
    Pagès V, Fuchs RP. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science. 2003;300:1300–3.PubMedCrossRefGoogle Scholar
  139. 139.
    McInerney P, O’Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem. 2004;279:21543–51.PubMedCrossRefGoogle Scholar
  140. 140.
    Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P. Co-directional replication-transcription conflicts lead to replication restart. Nature. 2011;470:554–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Marians KJ, Hiasa H, Kim DR, McHenry CS. Role of the core DNA polymerase III subunits at the replication fork. α is the only subunit required for processive replication. J Biol Chem. 1998;273:2452–7.PubMedCrossRefGoogle Scholar
  142. 142.
    McGlynn P, Guy CP. Replication forks blocked by protein-DNA complexes have limited stability in vitro. J Mol Biol. 2008;381:249–55.PubMedCrossRefGoogle Scholar
  143. 143.
    Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. 2006;7:932–43.PubMedCrossRefGoogle Scholar
  144. 144.
    Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010;11:683–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Llorente B, Smith CE, Symington LS. Break-induced replication: what is it and what is it for? Cell Cycle. 2008;7:859–64.PubMedCrossRefGoogle Scholar
  146. 146.
    Hashimoto Y, Puddu F, Costanzo V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol. 2012;19:17–24.CrossRefGoogle Scholar
  147. 147.
    Jones JM, Nakai H. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol. 1999;289:503–16.PubMedCrossRefGoogle Scholar
  148. 148.
    Liu J, Marians KJ. PriA-directed assembly of a primosome on D loop DNA. J Biol Chem. 1999;274:25033–41.PubMedCrossRefGoogle Scholar
  149. 149.
    Lee MS, Marians KJ. Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc Natl Acad Sci USA. 1987;84:8345–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Lasken RS, Kornberg A. The primosomal protein n′ of Escherichia coli is a DNA helicase. J Biol Chem. 1988;263:5512–8.PubMedGoogle Scholar
  151. 151.
    McGlynn P, Al-Deib AA, Liu J, Marians KJ, Lloyd RG. The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol. 1997;270:212–21.PubMedCrossRefGoogle Scholar
  152. 152.
    Nurse P, Liu J, Marians KJ. Two modes of PriA binding to DNA. J Biol Chem. 1999;274:25026–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Sasaki K, Ose T, Okamoto N, et al. Structural basis of the 3′-end recognition of a leading strand in stalled replication forks by PriA. EMBO J. 2007;26:2584–93.PubMedCrossRefGoogle Scholar
  154. 154.
    Tanaka T, Mizukoshi T, Sasaki K, Kohda D, Masai H. Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis. J Biol Chem. 2007;282:19917–27.PubMedCrossRefGoogle Scholar
  155. 155.
    Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell. 2002;9:241–51.PubMedCrossRefGoogle Scholar
  156. 156.
    Cadman CJ, McGlynn P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 2004;32:6378–87.PubMedCrossRefGoogle Scholar
  157. 157.
    Lecointe F, Serena C, Velten M, et al. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J. 2007;26:4239–51.PubMedCrossRefGoogle Scholar
  158. 158.
    Ng JY, Marians KJ. The ordered assembly of the fX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J Biol Chem. 1996;271:15642–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Liu J, Nurse P, Marians KJ. The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J Biol Chem. 1996;271:15656–61.PubMedCrossRefGoogle Scholar
  160. 160.
    Lopper M, Holton JM, Keck JL. Crystal structure of PriB, a component of the Escherichia coli replication restart primosome. Structure (Camb). 2004;12:1967–75.CrossRefGoogle Scholar
  161. 161.
    Cadman CJ, Lopper M, Moon PB, Keck JL, McGlynn P. PriB stimulates PriA helicase via an interaction with single-stranded DNA. J Biol Chem. 2005;280:39693–700.PubMedCrossRefGoogle Scholar
  162. 162.
    Lopper M, Boonsombat R, Sandler SJ, Keck JL. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 2007;26:781–93.PubMedCrossRefGoogle Scholar
  163. 163.
    Heller RC, Marians KJ. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell. 2005;17:733–43.PubMedCrossRefGoogle Scholar
  164. 164.
    Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature. 2006;439:557–62.PubMedCrossRefGoogle Scholar
  165. 165.
    Heller RC, Marians KJ. Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J Biol Chem. 2005;280:34143–51.PubMedCrossRefGoogle Scholar
  166. 166.
    Sandler SJ, Marians KJ. Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol. 2000;182:9–13.PubMedCrossRefGoogle Scholar
  167. 167.
    Sandler SJ, McCool JD, Do TT, Johansen RU. PriA mutations that affect PriA-PriC function during replication restart. Mol Microbiol. 2001;41:697–704.PubMedCrossRefGoogle Scholar
  168. 168.
    Heller RC, Marians KJ. Non-replicative helicases at the replication fork. DNA Repair (Amst). 2007;6:945–52.CrossRefGoogle Scholar
  169. 169.
    Sandler SJ. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics. 2000;155:487–97.PubMedGoogle Scholar
  170. 170.
    Kogoma T, Cadwell GW, Barnard KG, Asai T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol. 1996;178:1258–64.PubMedGoogle Scholar
  171. 171.
    Sandler SJ, Marians KJ, Zavitz KH, Coutu J, Parent MA, Clark AJ. dnaC mutations suppress defects in DNA replication- and recombination- associated functions in priB and priC double mutants in Escherichia coli K-12. Mol Microbiol. 1999;34:91–101.PubMedCrossRefGoogle Scholar
  172. 172.
    Nurse P, Zavitz KH, Marians KJ. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol. 1991;173:6686–93.PubMedGoogle Scholar
  173. 173.
    Lee EH, Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n′ protein. Proc Natl Acad Sci USA. 1991;88:3029–32.PubMedCrossRefGoogle Scholar
  174. 174.
    Rocha EP, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 2005;1:e15.PubMedCrossRefGoogle Scholar
  175. 175.
    Liu J, Xu L, Sandler SJ, Marians KJ. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc Natl Acad Sci USA. 1999;96:3552–5.PubMedCrossRefGoogle Scholar
  176. 176.
    Zavitz KH, Marians KJ. ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J Biol Chem. 1992;267:6933–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations