Advertisement

Roles for Helicases as ATP-Dependent Molecular Switches

  • Mark D. Szczelkun
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)

Abstract

On the basis of the familial name, a “helicase” might be expected to have an enzymatic activity that unwinds duplex polynucleotides to form single strands. A more encompassing taxonomy that captures alternative enzymatic roles has defined helicases as a sub-class of molecular motors that move directionally and processively along nucleic acids, the so-called “translocases”. However, even this definition may be limiting in capturing the full scope of helicase mechanism and activity. Discussed here is another, alternative view of helicases—as machines which couple NTP-binding and hydrolysis to changes in protein conformation to resolve stable nucleoprotein assembly states. This “molecular switch” role differs from the classical view of helicases as molecular motors in that only a single catalytic NTPase cycle may be involved. This is illustrated using results obtained with the DEAD-box family of RNA helicases and with a model bacterial system, the ATP-dependent Type III restriction-modification enzymes. Further examples are discussed and illustrate the wide-ranging examples of molecular switches in genome metabolism.

Keywords

Molecular Switch Helicase Domain Clamp Loader Inositol Hexakisphosphate NTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Ralf Seidel, Steve Halford, Dale Wigley, Mark Dillingham, Nigel Savery, Julia Toth, Fiona Diffin and Kara van Aelst for discussions about helicases and restriction enzymes and for experimental assistance.

References

  1. 1.
    Wu CG, Spies M. Overview: what are DNA helicases? DNA helicases and DNA motor proteins. 2012.Google Scholar
  2. 2.
    Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12(8):505–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Pyle AM. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys. 2008;37:317–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol. 2002; 12(1):123–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Singleton MR, Wigley DB. Multiple roles for ATP hydrolysis in nucleic acid modifying enzymes. EMBO J. 2003;22(18):4579–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Durr H, Flaus A, Owen-Hughes T, Hopfner KP. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 2006;34(15):4160–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ryan DP, Owen-Hughes T. Snf2-family proteins: chromatin remodellers for any occasion. Curr Opin Chem Biol. 2011;15(5):649–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Stanley LK, Seidel R, van der Scheer C, Dekker NH, Szczelkun MD, Dekker C. When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO J. 2006;25(10):2230–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 2011; 36(1):19–29.PubMedCrossRefGoogle Scholar
  11. 11.
    Szczelkun MD, Friedhoff P, Seidel R. Maintaining a sense of direction during long-range communication on DNA. Biochem Soc Trans. 2010;38(2):404–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Szczelkun MD. Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases. Biochem Soc Trans. 2011; 39(2):589–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.CrossRefGoogle Scholar
  14. 14.
    Soultanas P, Wigley DB. Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem Sci. 2001;26(1):47–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell. 1999;97(1):75–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Dillingham MS, Wigley DB, Webb MR. Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry. 2000;39(1):205–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Saikrishnan K, Powell B, Cook NJ, Webb MR, Wigley DB. Mechanistic basis of 5’-3’ translocation in SF1B helicases. Cell. 2009;137(5):849–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Singleton MR, Scaife S, Wigley DB. Structural analysis of DNA replication fork reversal by RecG. Cell. 2001;107(1):79–89.PubMedCrossRefGoogle Scholar
  19. 19.
    Savery NJ. The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 2007;15(7):326–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem. 2011;80:943–71.PubMedCrossRefGoogle Scholar
  21. 21.
    Vale RD. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996;135(2):291–302.PubMedCrossRefGoogle Scholar
  22. 22.
    Goody RS, Hofmann-Goody W. Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. Eur Biophys J. 2002;31(4):268–74.PubMedCrossRefGoogle Scholar
  23. 23.
    Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol. 2003;333(4):781–815.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomsen ND, Berger JM. Structural frameworks for considering microbial protein- and nucleic acid-dependent motor ATPases. Mol Microbiol. 2008;69(5):1071–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol. 1997;4(9):686–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Toseland CP, Martinez-Senac MM, Slatter AF, Webb MR. The ATPase cycle of PcrA helicase and its coupling to translocation on DNA. J Mol Biol. 2009;392(4):1020–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Soultanas P, Dillingham MS, Velankar SS, Wigley DB. DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. J Mol Biol. 1999;290(1):137–48.PubMedCrossRefGoogle Scholar
  28. 28.
    Carter NJ, Cross RA. Kinesin’s moonwalk. Curr Opin Cell Biol. 2006;18(1):61–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Deaconescu AM, Chambers AL, Smith AJ, et al. Structural basis for bacterial transcription-coupled DNA repair. Cell. 2006;124(3):507–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng W, Arunajadai SG, Moffitt JR, Tinoco Jr I, Bustamante C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science. 2011;333(6050):1746–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Myong S, Cui S, Cornish PV, et al. Cytosolic viral sensor RIG-I is a 5’-triphosphate-dependent translocase on double-stranded RNA. Science. 2009;323(5917):1070–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell. 2006;125(2):287–300.PubMedCrossRefGoogle Scholar
  33. 33.
    Bordeleau ME, Matthews J, Wojnar JM, et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc Natl Acad Sci USA. 2005;102(30):10460–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang Q, Jankowsky E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat Struct Mol Biol. 2006;13(11):981–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang Q, Del Campo M, Lambowitz AM, Jankowsky E. DEAD-box proteins unwind duplexes by local strand separation. Mol Cell. 2007;28(2):253–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Henn A, Cao W, Hackney DD, De La Cruz EM. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J Mol Biol. 2008;377(1):193–205.PubMedCrossRefGoogle Scholar
  37. 37.
    Henn A, Cao W, Licciardello N, Heitkamp SE, Hackney DD, De La Cruz EM. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proc Natl Acad Sci USA. 2011;107(9):4046–50.CrossRefGoogle Scholar
  38. 38.
    Liu F, Putnam A, Jankowsky E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc Natl Acad Sci USA. 2008;105(51):20209–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Aregger R, Klostermeier D. The DEAD box helicase YxiN maintains a closed conformation during ATP hydrolysis. Biochemistry. 2009;48(45):10679–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen Y, Potratz JP, Tijerina P, Del Campo M, Lambowitz AM, Russell R. DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci USA. 2008;105(51):20203–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Del Campo M, Lambowitz AM. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol Cell. 2009;35(5):598–609.PubMedCrossRefGoogle Scholar
  42. 42.
    Cao W, Coman MM, Ding S, et al. Mechanism of Mss116 ATPase reveals functional diversity of DEAD-Box proteins. J Mol Biol. 2011;409(3):399–414.PubMedCrossRefGoogle Scholar
  43. 43.
    Collins R, Karlberg T, Lehtio L, et al. The DEXD/H-box RNA helicase DDX19 is regulated by an a-helical switch. J Biol Chem. 2009;284(16):10296–300.PubMedCrossRefGoogle Scholar
  44. 44.
    Ballut L, Marchadier B, Baguet A, Tomasetto C, Seraphin B, Le Hir H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol. 2005;12(10):861–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature. 2011;472(7342):238–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Wilson GG, Murray NE. Restriction and modification systems. Annu Rev Genet. 1991;25:585–627.PubMedCrossRefGoogle Scholar
  47. 47.
    Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2010;38(database issue):D234–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Roberts RJ, Belfort M, Bestor T, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003;31(7):1805–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Gorbalenya AE, Koonin EV. Endonuclease (R) subunits of type-I and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Lett. 1991;291(2):277–81.PubMedCrossRefGoogle Scholar
  50. 50.
    McClelland SE, Szczelkun MD. The type I and III restriction endonucleases: structural elements in the molecular motors that process DNA. Nucleic Acids Mol Biol. 2004;14:111–35.CrossRefGoogle Scholar
  51. 51.
    Dryden DT, Cooper LP, Thorpe PH, Byron O. The in vitro assembly of the EcoKI type I DNA restriction/modification enzyme and its in vivo implications. Biochemistry. 1997;36(5):1065–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Janscak P, Dryden DT, Firman K. Analysis of the subunit assembly of the typeIC restriction-modification enzyme EcoR124I. Nucleic Acids Res. 1998;26(19):4439–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Kennaway CK, Taylor JE, Song CF, et al. Structure and operation of the DNA-translocating type I DNA restriction enzymes. Genes Dev. 2012;26(1):92–104.PubMedCrossRefGoogle Scholar
  54. 54.
    Obarska-Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, Kneale GG. HsdR subunit of the type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. J Mol Biol. 2008;376(2):438–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Lapkouski M, Panjikar S, Janscak P, et al. Structure of the motor subunit of type I restriction-modification complex EcoR124I. Nat Struct Mol Biol. 2009;16(1):94–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Janscak P, Sandmeier U, Szczelkun MD, Bickle TA. Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoP1I and EcoP15I. J Mol Biol. 2001;306(3):417–31.PubMedCrossRefGoogle Scholar
  57. 57.
    Wyszomirski KH, Curth U, Alves J, et al. Type III restriction endonuclease EcoP15I is a heterotrimeric complex containing one Res subunit with several DNA-binding regions and ATPase activity. Nucleic Acids Res. 2012;40:3610–22.PubMedCrossRefGoogle Scholar
  58. 58.
    Davies GP, Powell LM, Webb JL, Cooper LP, Murray NE. EcoKI with an amino acid substitution in any one of seven DEAD-box motifs has impaired ATPase and endonuclease activities. Nucleic Acids Res. 1998;26(21):4828–36.PubMedCrossRefGoogle Scholar
  59. 59.
    Webb JL, King G, Ternent D, Titheradge AJ, Murray NE. Restriction by EcoKI is enhanced by co-operative interactions between target sequences and is dependent on DEAD box motifs. EMBO J. 1996;15(8):2003–9.PubMedGoogle Scholar
  60. 60.
    Saha S, Rao DN. Mutations in the Res subunit of the EcoPI restriction enzyme that affect ATP-dependent reactions. J Mol Biol. 1997;269(3):342–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Halford SE, Gowers DM, Sessions RB. Two are better than one. Nat Struct Biol. 2000;7(9):705–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Linn S, Arber W. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci USA. 1968;59(4):1300–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Meselson M, Yuan R. DNA restriction enzyme from E. coli. Nature. 1968;217(5134):1110–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Roulland-Dussoix D, Boyer HW. The Escherichia coli B restriction endonuclease. Biochim Biophys Acta. 1969;195(1):219–29.PubMedCrossRefGoogle Scholar
  65. 65.
    Eskin B, Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. II. Purification, subunit structure, and catalytic properties of the restriction endonuclease. J Biol Chem. 1972;247(19):6183–91.PubMedGoogle Scholar
  66. 66.
    Eskin B, Linn S. The deoxyribonucleic acid modification and restriction enzymes of Escherichia coli B. J Biol Chem. 1972;247(19):6192–6.PubMedGoogle Scholar
  67. 67.
    Haberman A. The bacteriophage P1 restriction endonuclease. J Mol Biol. 1974;89(4): 545–63.PubMedCrossRefGoogle Scholar
  68. 68.
    Reiser J, Yuan R. Purification and properties of the P15 specific restriction endonuclease from Escherichia coli. J Biol Chem. 1977;252(2):451–6.PubMedGoogle Scholar
  69. 69.
    Kauc L, Piekarowicz A. Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf. Eur J Biochem. 1978;92(2):417–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Yuan R, Hamilton DL, Hadi SM, Bickle TA. Role of ATP in the cleavage mechanism of the EcoP15 restriction endonuclease. J Mol Biol. 1980;144(4):501–19.PubMedCrossRefGoogle Scholar
  71. 71.
    Horiuchi K, Zinder ND. Cleavage of bacteriophage fl DNA by the restriction enzyme of Escherichia coli B. Proc Natl Acad Sci USA. 1972;69(11):3220–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Shulman MJ. Model for wandering restriction enzymes. Nature. 1974;252(5478):76–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Rosamond J, Endlich B, Linn S. Electron microscopic studies of the mechanism of action of the restriction endonuclease of Escherichia coli B. J Mol Biol. 1979;129(4):619–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Yuan R, Hamilton DL, Burckhardt J. DNA translocation by the restriction enzyme from E. coli K. Cell. 1980;20(1):237–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Endlich B, Linn S. The DNA restriction endonuclease of Escherichia coli B. II. Further studies of the structure of DNA intermediates and products. J Biol Chem. 1985;260(9):5729–38.PubMedGoogle Scholar
  76. 76.
    Endlich B, Linn S. The DNA restriction endonuclease of Escherichia coli B. I. Studies of the DNA translocation and the ATPase activities. J Biol Chem. 1985;260(9):5720–8.PubMedGoogle Scholar
  77. 77.
    Studier FW, Bandyopadhyay PK. Model for how type I restriction enzymes select cleavage sites in DNA. Proc Natl Acad Sci USA. 1988;85(13):4677–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Davies GP, Kemp P, Molineux IJ, Murray NE. The DNA translocation and ATPase activities of restriction-deficient mutants of Eco KI. J Mol Biol. 1999;292(4):787–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Garcia LR, Molineux IJ. Translocation and specific cleavage of bacteriophage T7 DNA in vivo by EcoKI. Proc Natl Acad Sci USA. 1999;96(22):12430–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Firman K, Szczelkun MD. Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement. EMBO J. 2000;19(9):2094–102.PubMedCrossRefGoogle Scholar
  81. 81.
    Seidel R, Bloom JG, Dekker C, Szczelkun MD. Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I. EMBO J. 2008;27(9):1388–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Seidel R, Bloom JG, van Noort J, et al. Dynamics of initiation, termination and reinitiation of DNA translocation by the motor protein EcoR124I. EMBO J. 2005;24(23):4188–97.PubMedCrossRefGoogle Scholar
  83. 83.
    Seidel R, van Noort J, van der Scheer C, et al. Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat Struct Mol Biol. 2004;11(9):838–43.PubMedCrossRefGoogle Scholar
  84. 84.
    Dryden DT, Edwardson JM, Henderson RM. DNA translocation by type III restriction enzymes: a comparison of current models of their operation derived from ensemble and single-molecule measurements. Nucleic Acids Res. 2011;39(11):4525–31.PubMedCrossRefGoogle Scholar
  85. 85.
    Meisel A, Mackeldanz P, Bickle TA, Kruger DH, Schroeder C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J. 1995;14(12):2958–66.PubMedGoogle Scholar
  86. 86.
    Meisel A, Bickle TA, Kruger DH, Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature. 1992;355(6359):467–9.PubMedCrossRefGoogle Scholar
  87. 87.
    van Aelst K, Toth J, Ramanathan SP, Schwarz FW, Seidel R, Szczelkun MD. Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat. Proc Natl Acad Sci USA. 2011;107(20):9123–8.CrossRefGoogle Scholar
  88. 88.
    Peakman LJ, Szczelkun MD. DNA communications by Type III restriction endonucleases–confirmation of 1D translocation over 3D looping. Nucleic Acids Res. 2004;32(14):4166–74.PubMedCrossRefGoogle Scholar
  89. 89.
    Raghavendra NK, Rao DN. Unidirectional translocation from recognition site and a necessary interaction with DNA end for cleavage by Type III restriction enzyme. Nucleic Acids Res. 2004;32(19):5703–11.PubMedCrossRefGoogle Scholar
  90. 90.
    Crampton N, Roes S, Dryden DT, Rao DN, Edwardson JM, Henderson RM. DNA looping and translocation provide an optimal cleavage mechanism for the type III restriction enzymes. EMBO J. 2007;26(16):3815–25.PubMedCrossRefGoogle Scholar
  91. 91.
    Crampton N, Yokokawa M, Dryden DT, et al. Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc Natl Acad Sci USA. 2007;104(31):12755–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Reich S, Gossl I, Reuter M, Rabe JP, Kruger DH. Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I. J Mol Biol. 2004;341(2):337–43.PubMedCrossRefGoogle Scholar
  93. 93.
    Ramanathan SP, van Aelst K, Sears A, et al. Type III restriction enzymes communicate in 1D without looping between their target sites. Proc Natl Acad Sci USA. 2009;106(6):1748–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Schwarz FW, van Aelst K, Toth J, Seidel R, Szczelkun MD. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion. Nucleic Acids Res. 2011;39(18):8042–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Sears A, Peakman LJ, Wilson GG, Szczelkun MD. Characterization of the Type III restriction endonuclease PstII from Providencia stuartii. Nucleic Acids Res. 2005;33(15):4775–87.PubMedCrossRefGoogle Scholar
  96. 96.
    Szczelkun MD, Janscak P, Firman K, Halford SE. Selection of non-specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I. J Mol Biol. 1997;271(1):112–23.PubMedCrossRefGoogle Scholar
  97. 97.
    Szczelkun MD, Dillingham MS, Janscak P, Firman K, Halford SE. Repercussions of DNA tracking by the type IC restriction endonuclease EcoR124I on linear, circular and catenated substrates. EMBO J. 1996;15(22):6335–47.PubMedGoogle Scholar
  98. 98.
    Slutsky M, Mirny LA. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys J. 2004;87(6):4021–35.PubMedCrossRefGoogle Scholar
  99. 99.
    Givaty O, Levy Y. Protein sliding along DNA: dynamics and structural characterization. J Mol Biol. 2009;385(4):1087–97.PubMedCrossRefGoogle Scholar
  100. 100.
    Blainey PC, van Oijen AM, Banerjee A, Verdine GL, Xie XS. A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proc Natl Acad Sci USA. 2006;103(15):5752–7.PubMedCrossRefGoogle Scholar
  101. 101.
    von Hippel PH, Berg OG. Facilitated target location in biological systems. J Biol Chem. 1989;264(2):675–8.Google Scholar
  102. 102.
    Halford SE, Marko JF. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 2004;32(10):3040–52.PubMedCrossRefGoogle Scholar
  103. 103.
    Halford SE. An end to 40 years of mistakes in DNA-protein association kinetics? Biochem Soc Trans. 2009;37(Pt 2):343–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Komazin-Meredith G, Mirchev R, Golan DE, van Oijen AM, Coen DM. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion. Proc Natl Acad Sci USA. 2008;105(31):10721–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Bonnet I, Biebricher A, Porte PL, et al. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucleic Acids Res. 2008;36(12):4118–27.PubMedCrossRefGoogle Scholar
  106. 106.
    Lin Y, Zhao T, Jian X, et al. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with DNA. Biophys J. 2009;96(5):1911–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Kelch BA, Makino DL, O’Donnell M, Kuriyan J. How a DNA polymerase clamp loader opens a sliding clamp. Science. 2011;334(6063):1675–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang X, Wigley DB. The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol. 2008;15(11):1223–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: functions and mechanisms. Chem Rev. 2006;106(2):302–23.PubMedCrossRefGoogle Scholar
  110. 110.
    Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681–710.PubMedCrossRefGoogle Scholar
  111. 111.
    Ban C, Junop M, Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell. 1999;97(1):85–97.PubMedCrossRefGoogle Scholar
  112. 112.
    Obmolova G, Ban C, Hsieh P, Yang W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature. 2000;407(6805):703–10.PubMedCrossRefGoogle Scholar
  113. 113.
    Jeong C, Cho WK, Song KM, et al. MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol. 2011;18(3):379–85.PubMedCrossRefGoogle Scholar
  114. 114.
    Seybert A, Wigley DB. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J. 2004;23(6):1360–71.PubMedCrossRefGoogle Scholar
  115. 115.
    Sakato M, Zhou Y, Hingorani MM. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. J Mol Biol. 2012;416(2):176–91.PubMedCrossRefGoogle Scholar
  116. 116.
    Erzberger JP, Berger JM. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct. 2006;35:93–114.PubMedCrossRefGoogle Scholar
  117. 117.
    George H, Kuraoka I, Nauman DA, Kobertz WR, Wood RD, West SC. RuvAB-mediated branch migration does not involve extensive DNA opening within the RuvB hexamer. Curr Biol. 2000;10(2):103–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Enemark EJ, Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature. 2006;442(7100):270–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev. 2006;106(2):233–52.PubMedCrossRefGoogle Scholar
  120. 120.
    Pakotiprapha D, Inuzuka Y, Bowman BR, et al. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell. 2008;29(1):122–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of BiochemistryUniversity of BristolBristolUK

Personalised recommendations