Advertisement

DNA Helicases in NER, BER, and MMR

  • Jochen Kuper
  • Caroline Kisker
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)

Abstract

Different DNA repair mechanisms have evolved to protect our genome from modifications caused by endogenous and exogenous agents, thus maintaining the integrity of the DNA. Helicases often play a central role in these repair pathways and have shown to be essential for diverse tasks within these mechanisms. In prokaryotic nucleotide excision repair (NER) for example the two helicases UvrB and UvrD assume vastly different functions. While UvrB is intimately involved in damage verification and acts as an anchor for the other prokaryotic NER proteins UvrA and UvrC, UvrD is required to resolve the post-incision complex leading to the release of UvrC and the incised ssDNA fragment. For the XPD helicase in eukaryotic NER a similar function in analogy to UvrB has been proposed, whereas XPB the second helicase uses only its ATPase activity during eukaryotic NER. In prokaryotic mismatch repair (MMR) UvrD again plays a central role. The different tasks of this protein in the different repair pathways highlight the importance of regulative protein–protein interactions to fine-tune its helicase activity. In other DNA repair pathways the role of the helicases involved is sometimes not as well characterized, and no helicase has so far been described to assume the function of UvrD in eukaryotic MMR. RecQ helicases and FancJ interact with eukaryotic MMR proteins but their involvement in this repair pathway is unclear. Lastly, long-patch base excision repair is linked to the WRN helicase and many proteins within this pathway interact with the helicase leading to increased activity of the interacting proteins as observed for pol β and FEN-1 or the helicase itself is negatively regulated through the interaction with APE-1. However, compared to the precise functions described for the helicases in the other DNA repair mechanisms the role of WRN in BER remains speculative and requires further analysis.

Keywords

ATPase Activity Nucleotide Excision Repair Base Excision Repair Helicase Activity Auxiliary Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lindahl T, Wood RD. Quality control by DNA repair. Science. 1999;286:1897–905.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Houten B. Nucleotide excision repair in Escherichia coli. Microbiol Rev. 1990;54:18–51.PubMedGoogle Scholar
  3. 3.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. DNA repair and mutagenesis. Washington, DC: ASM Press; 2006.Google Scholar
  4. 4.
    Gillet LC, Scharer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev. 2006;106(2):253–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Kuper J, Kisker C. Damage recognition in nucleotide excision DNA repair. Curr Opin Struct Biol. 2012;22(1):88–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, Ehrlich SD, et al. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol. 1998;29(1):261–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Manelyte L, Guy CP, Smith RM, Dillingham MS, McGlynn P, Savery NJ. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair. DNA Repair. 2009;8(11):1300–10.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamagata A, Masui R, Kato R, Nakagawa N, Ozaki H, Sawai H, et al. Interaction of UvrA and UvrB proteins with a fluorescent single-stranded DNA. Implication for slow conformational change upon interaction of UvrB with DNA. J Biol Chem. 2000;275(18):13235–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Matson SW. Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3’ to 5’ direction. J Biol Chem. 1986;261(22):10169–75.PubMedGoogle Scholar
  11. 11.
    Fischer CJ, Maluf NK, Lohman TM. Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol. 2004;344(5):1287–309.PubMedCrossRefGoogle Scholar
  12. 12.
    Anand SP, Khan SA. Structure-specific DNA binding and bipolar helicase activities of PcrA. Nucleic Acids Res. 2004;32(10):3190–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM. Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem. 2007;282(37):27076–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Pakotiprapha D, Samuels M, Shen K, Hu JH, Jeruzalmi D. Structure and mechanism of the UvrA-UvrB DNA damage sensor. Nat Struct Mol Biol. 2012;19(3):291–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Verhoeven EE, Wyman C, Moolenaar GF, Goosen N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 2002;21(15):4196–205.PubMedCrossRefGoogle Scholar
  16. 16.
    Theis K, Skorvaga M, Machius M, Nakagawa N, Van Houten B, Kisker C. The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. Mutat Res. 2000;460(3–4):277–300.PubMedGoogle Scholar
  17. 17.
    Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev. 2006;106(2):233–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Theis K, Chen PJ, Skorvaga M, Houten BV, Kisker C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 1999;18:6899–907.PubMedCrossRefGoogle Scholar
  19. 19.
    Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat Res. 2005;577(1–2):92–117.PubMedGoogle Scholar
  20. 20.
    Skorvaga M, Theis K, Mandavilli BS, Kisker C, Van Houten B. The beta-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J Biol Chem. 2002;277(2):1553–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Moolenaar GF, Hoglund L, Goosen N. Clue to damage recognition by UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA. EMBO J. 2001;20(21):6140–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Moolenaar GF, Schut M, Goosen N. Binding of the UvrB dimer to non-damaged and damaged DNA: residues Y92 and Y93 influence the stability of both subunits. DNA Repair (Amst). 2005;4(6):699–713.CrossRefGoogle Scholar
  23. 23.
    Truglio JJ, Karakas E, Rhau B, Wang H, DellaVecchia MJ, Van Houten B, et al. Structural basis for DNA recognition and processing by UvrB. Nat Struct Mol Biol. 2006;13(4):360–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang H, DellaVecchia MJ, Skorvaga M, Croteau DL, Erie DA, Van Houten B. UvrB domain 4, an autoinhibitory gate for regulation of DNA binding and ATPase activity. J Biol Chem. 2006;281(22):15227–37.PubMedCrossRefGoogle Scholar
  25. 25.
    Oh EY, Grossman L. Characterization of the helicase activity of the Escherichia coli UvrAB protein complex. J Biol Chem. 1989;264:1336–43.PubMedGoogle Scholar
  26. 26.
    Moolenaar GF, Monaco V, van der Marel GA, van Boom JH, Visse R, Goosen N. The effect of the DNA flanking the lesion on formation of the UvrB-DNA preincision complex. Mechanism for the UvrA-mediated loading of UvrB onto a DNA damaged site. J Biol Chem. 2000;275(11):8038–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Zou Y, Ma H, Minko IG, Shell SM, Yang Z, Qu Y, et al. DNA damage recognition of mutated forms of UvrB proteins in nucleotide excision repair. Biochemistry. 2004;43(14):4196–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Sancar A, Franklin KA, Sancar GB. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc Natl Acad Sci USA. 1984;81(23):7397–401.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JY, Yang W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell. 2006;127(7):1349–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Jia H, Korolev S, Niedziela-Majka A, Maluf NK, Gauss GH, Myong S, et al. Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding. J Mol Biol. 2011;411(3):633–48.PubMedCrossRefGoogle Scholar
  31. 31.
    Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem. 2009;284(14):9612–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Coin F, Oksenych V, Egly JM. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell. 2007;26(2):245–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell. 2010;37(5):714–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell. 2007;27(2):311–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell. 2006;22(1):27–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Oksenych V, de Jesus BB, Zhovmer A, Egly JM, Coin F. Molecular insights into the recruitment of TFIIH to sites of DNA damage. EMBO J. 2009;28(19):2971–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Egly JM, Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair. 2011;10(7):714–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts VA, et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell. 2008;133(5):789–800.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, et al. Structure of the DNA repair helicase XPD. Cell. 2008;133(5):801–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Wolski SC, Kuper J, Hanzelmann P, Truglio JJ, Croteau DL, Van Houten B, et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 2008;6(6):e149.PubMedCrossRefGoogle Scholar
  41. 41.
    Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell. 2006;23(6):801–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J. 2012;31(2):494–502.CrossRefGoogle Scholar
  43. 43.
    Rudolf J, Rouillon C, Schwarz-Linek U, White MF. The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res. 2010;38(3):931–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet. 1998;20(2):184–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Sandrock B, Egly JM. A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem. 2001;276(38):35328–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Coin F, Oksenych V, Mocquet V, Groh S, Blattner C, Egly JM. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol Cell. 2008;31(1):9–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Weber A, Chung HJ, Springer E, Heitzmann D, Warth R. The TFIIH subunit p89 (XPB) localizes to the centrosome during mitosis. Cell Oncol. 2010;32(1–2):121–30.PubMedGoogle Scholar
  48. 48.
    Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, et al. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell. 2010;39(4):632–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen J, Larochelle S, Li X, Suter B. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature. 2003;424(6945):228–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Li X, Urwyler O, Suter B. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet. 2010;6(3):e1000876.PubMedCrossRefGoogle Scholar
  51. 51.
    Wu Y, Suhasini AN, Brosh Jr RM. Welcome the family of FANCJ-like helicases to the block of genome stability maintenance proteins. Cell Mol Life Sci. 2009;66(7):1209–22.PubMedCrossRefGoogle Scholar
  52. 52.
    White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5’–>3’ DNA helicases. Biochem Soc Trans. 2009;37(Pt 3):547–51.PubMedCrossRefGoogle Scholar
  53. 53.
    Drapkin R, Reardon JT, Ansari A, Huang JC, Zawel L, Ahn K, et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994;368(6473):769–72.PubMedCrossRefGoogle Scholar
  54. 54.
    Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature. 1993;365(6449):852–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, Seo YS, et al. Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem. 2008;283(30):20925–36.PubMedCrossRefGoogle Scholar
  56. 56.
    Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ. The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci. 2006;119(pt 23):4857–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105(1):149–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell. 2004;117(7):873–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Honda M, Park J, Pugh RA, Ha T, Spies M. Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase. Mol Cell. 2009;35(5):694–703.PubMedCrossRefGoogle Scholar
  60. 60.
    Fromme JC, Banerjee A, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature. 2004;427(6975):652–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Guan Y, Manuel RC, Arvai AS, Parikh SS, Mol CD, Miller JH, et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Biol. 1998;5(12):1058–64.PubMedCrossRefGoogle Scholar
  62. 62.
    Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 1995;14(16):4108–20.PubMedGoogle Scholar
  63. 63.
    Boal AK, Yavin E, Lukianova OA, O’Shea VL, David SS, Barton JK. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters. Biochemistry. 2005;44(23):8397–407.PubMedCrossRefGoogle Scholar
  64. 64.
    Merino EJ, Boal AK, Barton JK. Biological contexts for DNA charge transport chemistry. Curr Opin Chem Biol. 2008;12(2):229–37.PubMedCrossRefGoogle Scholar
  65. 65.
    Boal AK, Yavin E, Barton JK. DNA repair glycosylases with a [4Fe-4S] cluster: a redox cofactor for DNA-mediated charge transport? J Inorg Biochem. 2007;101(11–12):1913–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Mui TP, Fuss JO, Ishida JP, Tainer JA, Barton JK. ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase. J Am Chem Soc. 2011;133:16378–81.PubMedCrossRefGoogle Scholar
  67. 67.
    Mathieu N, Kaczmarek N, Naegeli H. Strand- and site-specific DNA lesion demarcation by the xeroderma pigmentosum group D helicase. Proc Natl Acad Sci USA. 2010;107:17545–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Sontz PA, Mui TP, Fuss JO, Tainer JA, Barton JK. DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. Proc Natl Acad Sci USA. 2012;109(6):1856–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Suhasini AN, Sommers JA, Mason AC, Voloshin ON, Camerini-Otero RD, Wold MS, et al. FANCJ helicase uniquely senses oxidative base damage in either strand of duplex DNA and is stimulated by replication protein A to unwind the damaged DNA substrate in a strand-specific manner. J Biol Chem. 2009;284(27):18458–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Song L, Yuan F, Zhang Y. Does a helicase activity help mismatch repair in eukaryotes? IUBMB Life. 2010;62(7):548–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Fukui K. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids. 2010;2010:1–6.CrossRefGoogle Scholar
  72. 72.
    Matson SW, Robertson AB. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res. 2006;34(15):4089–97.PubMedCrossRefGoogle Scholar
  73. 73.
    Maluf NK, Ali JA, Lohman TM. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex. J Biol Chem. 2003;278(34):31930–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Ali JA, Lohman TM. Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science. 1997;275(5298):377–80.PubMedCrossRefGoogle Scholar
  75. 75.
    Dao V, Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem. 1998;273(15):9202–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Hall MC, Jordan JR, Matson SW. Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J. 1998;17(5):1535–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Hall MC, Matson SW. The Escherichia coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity. J Biol Chem. 1999;274(3):1306–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Mechanic LE, Frankel BA, Matson SW. Escherichia coli MutL loads DNA helicase II onto DNA. J Biol Chem. 2000;275(49):38337–46.PubMedCrossRefGoogle Scholar
  79. 79.
    Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7(5):335–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE, et al. Reconstitution of 5’-directed human mismatch repair in a purified system. Cell. 2005;122(5):693–705.PubMedCrossRefGoogle Scholar
  81. 81.
    Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P. A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell. 2004;15(1):31–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Genschel J, Modrich P. Mechanism of 5’-directed excision in human mismatch repair. Mol Cell. 2003;12(5):1077–86.PubMedCrossRefGoogle Scholar
  83. 83.
    Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.PubMedCrossRefGoogle Scholar
  84. 84.
    Sedgwick B, Bates PA, Paik J, Jacobs SC, Lindahl T. Repair of alkylated DNA: recent advances. DNA Repair. 2007;6(4):429–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Kavli B, Otterlei M, Slupphaug G, Krokan HE. Uracil in DNA–general mutagen, but normal intermediate in acquired immunity. DNA Repair. 2007;6(4):505–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Kubota Y, Nash RA, Klungland A, Schar P, Barnes DE, Lindahl T. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 1996;15(23):6662–70.PubMedGoogle Scholar
  87. 87.
    Kim K, Biade S, Matsumoto Y. Involvement of flap endonuclease 1 in base excision DNA repair. J Biol Chem. 1998;273(15):8842–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997;16(11):3341–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66(6):981–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Martin GM, Oshima J, Gray MD, Poot M. What geriatricians should know about the Werner syndrome. J Am Geriatr Soc. 1999;47(9):1136–44.PubMedGoogle Scholar
  91. 91.
    Martin GM, Oshima J. Lessons from human progeroid syndromes. Nature. 2000;408(6809):263–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Bohr VA, Deficient DNA. repair in the human progeroid disorder, Werner syndrome. Mutat Res. 2005;577(1–2):252–9.PubMedGoogle Scholar
  93. 93.
    Blank A, Bobola MS, Gold B, Varadarajan S, D Kolstoe D, Meade EH, et al. The Werner syndrome protein confers resistance to the DNA lesions N3-methyladenine and O6-methylguanine: implications for WRN function. DNA Repair. 2004;3(6):629–38.PubMedCrossRefGoogle Scholar
  94. 94.
    Harrigan JA, Wilson III DM, Prasad R, Opresko PL, Beck G, May A, et al. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res. 2006;34(2):745–54.PubMedCrossRefGoogle Scholar
  95. 95.
    Imamura O, Fujita K, Itoh C, Takeda S, Furuichi Y, Matsumoto T. Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene. 2002;21(6):954–63.PubMedCrossRefGoogle Scholar
  96. 96.
    Szekely AM, Bleichert F, Numann A, Van Komen S, Manasanch E, Ben Nasr A, et al. Werner protein protects nonproliferating cells from oxidative DNA damage. Mol Cell Biol. 2005;25(23):10492–506.PubMedCrossRefGoogle Scholar
  97. 97.
    Von Kobbe C, May A, Grandori C, Bohr VA. Werner syndrome cells escape hydrogen peroxide-induced cell proliferation arrest. FASEB J. 2004;18(15):1970–2.Google Scholar
  98. 98.
    Ahn B, Harrigan JA, Indig FE, Wilson III DM, Bohr VA. Regulation of WRN helicase activity in human base excision repair. J Biol Chem. 2004;279(51):53465–74.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgWürzburgGermany

Personalised recommendations