Overview: What Are Helicases?

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 973)

Abstract

First discovered in the 1970s, DNA helicases were initially described as enzymes that use chemical energy to separate (i.e., to unwind) the complementary strands of DNA. Because helicases are ubiquitous, display a range of fascinating biochemical activities, and are involved in all aspects of DNA metabolism, defects in human helicases are linked to a variety of genetic disorders, and helicase research continues to be important in understanding the molecular basis of DNA replication, recombination, and repair. The purpose of this book is to organize this information and to update the traditional view of these enzymes, because it is now evident that not all helicases possess bona fide strand separation activity and may function instead as energy-dependent switches or translocases. In this chapter, we will first discuss the biochemical and structural features of DNA—the lattice on which helicases operate—and its cellular organization. We will then provide a historical overview of helicases, starting from their discovery and classification, leading to their structures, mechanisms, and biomedical significance. Finally, we will highlight several key advances and developments in helicase research, and summarize some remaining questions and active areas of investigation. The subsequent chapters will discuss these topics and others in greater detail and are written by experts of these respective fields.

Keywords

Forster Resonance Energy Transfer Helicase Activity Optical Trap Forster Resonance Energy Transfer Efficiency Strand Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Meselson M, Stahl FW. The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1958;44(7):671–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews AJ, Luger K. Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys. 2011;40:99–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Abdel-Monem M, Durwald H, Hoffmann-Berling H. Enzymic unwinding of DNA. 2. Chain separation by an ATP-dependent DNA unwinding enzyme. Eur J Biochem. 1976;65(2):441–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Abdel-Monem M, Hoffmann-Berling H. Enzymatic unwinding of DNA. 1. Purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem. 1976;65(2):431–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Gorbalenya AE, Koonin EV. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol. 1993;3:419–29.CrossRefGoogle Scholar
  7. 7.
    Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Jankowsky E, Fairman ME. RNA helicases—one fold for many functions. Curr Opin Struct Biol. 2007;17(3):316–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Jankowsky E, Fairman ME, Yang Q. RNA helicases: versatile ATP-driven nanomotors. J Nanosci Nanotechnol. 2005;5(12):1983–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Brendza KM, et al. Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci U S A. 2005;102(29):10076–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Maluf NK, Fischer CJ, Lohman TM. A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J Mol Biol. 2003;325(5):913–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Niedziela-Majka A, et al. Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem. 2007;282(37): 27076–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Tomko EJ, et al. A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol Cell. 2007;26(3):335–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Park SK, et al. RNA helicase activity of Escherichia coli SecA protein. Biochem Biophys Res Commun. 1997;235:593–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Gelis I, et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell. 2007;131(4):756–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Martin A, Baker TA, Sauer RT. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature. 2005;437(7062):1115–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Lohman TM, Bjornson KP. Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem. 1996;65:169–214.PubMedCrossRefGoogle Scholar
  18. 18.
    Patel SS, Donmez I. Mechanisms of helicases. J Biol Chem. 2006;281(27):18265–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Schnitzer MJ, Block SM. Kinesin hydrolyses one ATP per 8-nm step. Nature. 1997;388: 386–90.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng W, et al. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science. 2011;333(6050):1746–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Lucius AL, et al. General methods for analysis of sequential “n-step” kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys J. 2003;85(4):2224–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Bianco PR, et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature. 2001;409:374–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Sikora B, et al. DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor. J Biol Chem. 2006;281(47):36110–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Spies M, et al. RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell. 2007;131(4):694–705.PubMedCrossRefGoogle Scholar
  25. 25.
    Betterton MD, Julicher F. Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(1):011904.PubMedCrossRefGoogle Scholar
  26. 26.
    Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Q Rev Biophys. 2002;35(4):431–78.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson DS, et al. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell. 2007;129(7):1299–309.PubMedCrossRefGoogle Scholar
  28. 28.
    Manosas M, et al. Active and passive mechanisms of helicases. Nucleic Acids Res. 2010;38(16):5518–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Byrd AK, et al. Dda helicase tightly couples translocation on single-stranded DNA to unwinding of duplex DNA: Dda is an optimally active helicase. J Mol Biol. 2012;420(3):141–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Singleton MR, et al. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature. 2004;432(7014):187–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Farah JA, Smith GR. The RecBCD enzyme initiation complex for DNA unwinding: enzyme positioning and DNA opening. J Mol Biol. 1997;272:699–715.PubMedCrossRefGoogle Scholar
  32. 32.
    Wong CJ, Lucius AL, Lohman TM. Energetics of DNA end binding by E. coli RecBC and RecBCD helicases indicate loop formation in the 3′-single-stranded DNA tail. J Mol Biol. 2005;352(4):765–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu CG, Bradford C, Lohman TM. Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor. Nat Struct Mol Biol. 2010;17(10):1210–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahnert P, Patel SS. Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J Biol Chem. 1997;272(51):32267–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Hacker KJ, Johnson KA. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry. 1997;36:14080–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Galletto R, Jezewska MJ, Bujalowski W. Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: the effect of the 3′ arm and the stability of the dsDNA on the unwinding activity of the Escherichia coli DnaB helicase. J Mol Biol. 2004;343(1):101–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Eoff RL, Raney KD. Helicase-catalysed translocation and strand separation. Biochem Soc Trans. 2005;33(Pt 6):1474–8.PubMedGoogle Scholar
  38. 38.
    Pugh RA, Wu CG, Spies M. Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J. 2012;31(2):503–14.CrossRefGoogle Scholar
  39. 39.
    Saikrishnan K, et al. DNA binding to RecD: role of the 1B domain in SF1B helicase activity. EMBO J. 2008;27(16):2222–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Tomishige M, Stuurman N, Vale RD. Single-molecule observations of neck linker conformational changes in the kinesin motor protein. Nat Struct Mol Biol. 2006;13(10):887–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Kuper J, et al. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J. 2012;31(2):494–502.CrossRefGoogle Scholar
  42. 42.
    Cantor SB, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell. 2001;105(1):149–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Clapperton JA, et al. Structure and mechanism of BRCA1 BRCT domain recognition of ­phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol. 2004;11(6):512–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuhn B, Abdel-Monem M, Hoffmann-Berling H. DNA helicases. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):63–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Venkatesan M, Silver LL, Nossal NG. J Biol Chem. 1982;257:12426–34.PubMedGoogle Scholar
  46. 46.
    Matson SW, Tabor S, Richardson CC. The gene 4 protein of bacteriophage T7. Characterization of helicase activity. J Biol Chem. 1983;258:14017–24.PubMedGoogle Scholar
  47. 47.
    Dillingham MS, et al. Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity. Biophys J. 2008;95(7):3330–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Eggleston AK, Rahim NA, Kowalczykowski SC. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res. 1996;24:1179–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Ali JA, Lohman TM. Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science. 1997;275(5298):377–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Yodh JG, Schlierf M, Ha T. Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys. 2010;43(2):185–217.PubMedCrossRefGoogle Scholar
  51. 51.
    Comstock MJ, Ha T, Chemla YR. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods. 2011;8(4):335–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Dessinges MN, et al. Stretching single stranded DNA, a model polyelectrolyte. Phys Rev Lett. 2002;89(24):248102.PubMedCrossRefGoogle Scholar
  53. 53.
    Perkins TT, et al. Forward and reverse motion of single RecBCD molecules on DNA. Biophys J. 2004;86(3):1640–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Spies M, et al. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. Cell. 2003;114(5):647–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Sun B, et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature. 2011;478(7367):132–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Fazio TA, et al. Fabrication of nanoscale “curtain rods” for DNA curtains using nanoimprint lithography. J Vac Sci Technol A. 2009;27(6):3095–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Fazio T, et al. DNA curtains and nanoscale curtain rods: high-throughput tools for single ­molecule imaging. Langmuir. 2008;24(18):10524–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Finkelstein IJ, Visnapuu ML, Greene EC. Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature. 2010;468(7326):983–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations