Skip to main content

Perspectives on Percutaneous Penetration of Nanomaterials

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

The skin may be an unintended route for localized and systemic exposure to nanoparticles released during the manufacture, use, and disposal of nanomaterials. Percutaneous absorption is a dynamic process and there are many components with which a penetrant interacts before possibly gaining systemic access. Here, the classic ten steps of percutaneous penetration are expanded to 15 perspectives. These are issues considered from the perspective of nanoparticles and the potential risks of dermal exposure. Although much remains to be done in the field of dermatotoxicology of nanomaterials, uncertainties regarding the impact of nanoscale materials would be helped by greater consistency in methodologies used to assess health risks. Without extensive validation of highly standardized and well-controlled test systems, in vitro data alone cannot be used in place of in vivo data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISO TS 27687:2008 – Nanotechnologies -Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate.

    Google Scholar 

  2. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    PubMed  CAS  Google Scholar 

  3. Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129(5):1156–64.

    PubMed  CAS  Google Scholar 

  4. Jung S, Patzelt A, Otberg N, Thiede G, Sterry W, Lademann J. Strategy of topical vaccination with nanoparticles. J Biomed Opt. 2009;14(2):021001.

    PubMed  Google Scholar 

  5. Wester RC, Maibach HI. Cutaneous pharmacokinetics: 10 steps to percutaneous absorption. Drug Metab Rev. 1983;14(2):169–205.

    PubMed  CAS  Google Scholar 

  6. Farahmand S, Maibach HI. Estimating skin permeability from physicochemical characteristics of drugs: a comparison between conventional models and an in vivo-based approach. Int J Pharm. 2009;375(1–2):41–7.

    PubMed  CAS  Google Scholar 

  7. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    PubMed  CAS  Google Scholar 

  8. Patel H, ten Berge W, Cronin MT. Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere. 2002;48(6):603–13.

    PubMed  CAS  Google Scholar 

  9. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    PubMed  CAS  Google Scholar 

  10. Scheuplein RJ, Blank IH. Mechanism of percutaneous absorption. IV. Penetration of nonelectrolytes (alcohols) from aqueous solutions and from pure liquids. J Invest Dermatol. 1973;60(5):286–96.

    CAS  Google Scholar 

  11. Scheuplein RJ. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol. 1967;48(1):79–88.

    PubMed  CAS  Google Scholar 

  12. Thurn KT, Brown E, Wu A, Vogt S, Lai B, Maser J, et al. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett. 2007;2(9):430–41.

    PubMed  CAS  Google Scholar 

  13. Matilainen A, Sillanpaa M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere. 2010;80(4):351–65.

    PubMed  CAS  Google Scholar 

  14. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci. 2006;92(1):174–85.

    PubMed  CAS  Google Scholar 

  15. Lipovsky A, Gedanken A, Nitzan Y, Lubart R. Enhanced inactivation of bacteria by metal-oxide nanoparticles combined with visible light irradiation. Lasers Surg Med. 2011;43(3):236–40.

    PubMed  Google Scholar 

  16. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology. 2009;1(4):197–206.

    CAS  Google Scholar 

  17. Labouta HI, el-Khordagui LK, Kraus T, Schneider M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 2011;3(12):4989–99.

    PubMed  CAS  Google Scholar 

  18. Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, et al. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465–8.

    PubMed  CAS  Google Scholar 

  19. Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011;253(2):81–93.

    PubMed  CAS  Google Scholar 

  20. Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45–8.

    PubMed  CAS  Google Scholar 

  21. Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 2009;14(2):021014.

    PubMed  Google Scholar 

  22. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123(1):168–76.

    PubMed  CAS  Google Scholar 

  23. Wu X, Landfester K, Musyanovych A, Guy RH. Disposition of charged nanoparticles after their topical application to the skin. Skin Pharmacol Physiol. 2010;23(3):117–23.

    PubMed  CAS  Google Scholar 

  24. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91(1):159–65.

    PubMed  CAS  Google Scholar 

  25. Scheuplein RJ, Blank IH, Brauner GJ, MacFarlane DJ. Percutaneous absorption of steroids. J Invest Dermatol. 1969;52(1):63–70.

    PubMed  CAS  Google Scholar 

  26. Hadgraft J, Valenta C. pH, pK(a) and dermal delivery. Int J Pharm. 2000;200(2):243–7.

    PubMed  CAS  Google Scholar 

  27. Gilpin SJ, Hui X, Maibach HI. Volatility of fragrance chemicals: patch testing implications. Dermatitis. 2009;20(4):200–7.

    PubMed  CAS  Google Scholar 

  28. Farrell KA. Synthesis effects of grain size and phase content in the anastase-rutile TiO2 system. Thesis, Worcester Polytechnic Institute. 2001. www.wpi.edu/Pubs/ETD/Available/etd-081699-142023.

  29. Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE. Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. ACS Nano. 2011;5(5):3577–84.

    PubMed  CAS  Google Scholar 

  30. Smith EW, Maibach HI, editors. Percutaneous penetration enhancers. 2nd ed. Boca Raton: CRC Press; 2006.

    Google Scholar 

  31. Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007;37(3):251–77.

    PubMed  CAS  Google Scholar 

  32. Teichmann A, Heuschkel S, Jacobi U, Presse G, Neubert RH, Sterry W, et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur J Pharm Biopharm. 2007;67(3):699–706.

    PubMed  CAS  Google Scholar 

  33. Neubert RH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm. 2011;77(1):1–2.

    PubMed  CAS  Google Scholar 

  34. Schroeter A, Engelbrecht T, Neubert RH, Goebel AS. New nanosized technologies for dermal and transdermal drug delivery. A review. J Biomed Nanotechnol. 2010;6(5):511–28.

    PubMed  CAS  Google Scholar 

  35. Moody RP, Wester RC, Melendres JL, Maibach HI. Dermal absorption of the phenoxy herbicide 2,4-D dimethylamine in humans: effect of DEET and anatomic site. J Toxicol Environ Health. 1992;36(3):241–50.

    PubMed  CAS  Google Scholar 

  36. Kuo TR, Wu CL, Hsu CT, Lo W, Chiang SJ, Lin SJ, et al. Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials. 2009;30(16):3002–8.

    PubMed  CAS  Google Scholar 

  37. Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242(1):29–37.

    PubMed  CAS  Google Scholar 

  38. Lee J, Yamakoshi Y, Hughes JB, Kim JH. Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species. Environ Sci Technol. 2008;42(9):3459–64.

    PubMed  CAS  Google Scholar 

  39. Trommer H, Neubert RH. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol. 2006;19(2):106–21.

    PubMed  CAS  Google Scholar 

  40. Meinke MC, Patzelt A, Richter H, Schanzer S, Sterry W, Filbry A, et al. Prevention of follicular penetration: barrier-enhancing formulations against the penetration of pollen allergens into hair follicles. Skin Pharmacol Physiol. 2011;24(3):144–50.

    PubMed  CAS  Google Scholar 

  41. Vieille-Petit A, Pirot F, Maibach HI. Lateral spreading from skin exposure: assessment with tape stripping. Submitted for publication.

    Google Scholar 

  42. Wester RC, Noonan PK, Maibach HI. Variations in percutaneous absorption of testosterone in the rhesus monkey due to anatomic site of application and frequency of application. Arch Dermatol Res. 1980;267(3):229–35.

    PubMed  CAS  Google Scholar 

  43. Wester RC, Noonan PK, Maibach HI. Frequency of application on percutaneous absorption of hydrocortisone. Arch Dermatol. 1977;113(5):620–2.

    PubMed  CAS  Google Scholar 

  44. Rougier A, Lotte C, Maibach HI. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J Pharm Sci. 1987;76(6):451–4.

    PubMed  CAS  Google Scholar 

  45. Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122(1):14–9.

    PubMed  CAS  Google Scholar 

  46. Ngo MA, O’Malley M, Maibach HI. Percutaneous absorption and exposure assessment of pesticides. J Appl Toxicol. 2009;30(2):91–114.

    Google Scholar 

  47. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting—a promising tool in selective dermatotherapy. J Investig Dermatol Symp Proc. 2005;10(3):252–5.

    PubMed  Google Scholar 

  48. Ohyama M. Hair follicle bulge: a fascinating reservoir of epithelial stem cells. J Dermatol Sci. 2007;46(2):81–9.

    PubMed  CAS  Google Scholar 

  49. Blank IH, Scheuplein RJ. Transport into and within the skin. Br J Dermatol. 1969;81 Suppl 4:4–10.

    CAS  Google Scholar 

  50. Feldmann RJ, Maibach HI. Regional variation in percutaneous penetration of 14C cortisol in man. J Invest Dermatol. 1967;48(2):181–3.

    PubMed  CAS  Google Scholar 

  51. Maibach HI, Feldman RJ, Milby TH, Serat WF. Regional variation in percutaneous penetration in man. Arch Environ Health. 1971;23(3):208–11.

    PubMed  CAS  Google Scholar 

  52. Kao J, Hall J, Helman G. In vitro percutaneous absorption in mouse skin: influence of skin appendages. Toxicol Appl Pharmacol. 1988;94(1):93–103.

    PubMed  CAS  Google Scholar 

  53. Hueber F, Schaefer H, Wepierre J. Role of transepidermal and transfollicular routes in percutaneous absorption of steroids: in vitro studies on human skin. Skin Pharmacol. 1994;7(5):237–44.

    PubMed  CAS  Google Scholar 

  54. Jacobi U, Engel K, Patzelt A, Worm M, Sterry W, Lademann J. Penetration of pollen proteins into the skin. Skin Pharmacol Physiol. 2007;20(6):297–304.

    PubMed  CAS  Google Scholar 

  55. Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, et al. Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol. 2006;19(4):232–6.

    PubMed  CAS  Google Scholar 

  56. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12(5):247–56.

    PubMed  CAS  Google Scholar 

  57. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 2010;118(1):140–9.

    PubMed  CAS  Google Scholar 

  58. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126(6):1316–22.

    PubMed  CAS  Google Scholar 

  59. Lademann J, Otberg N, Richter H, Weigmann HJ, Lindemann U, Schaefer H, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:17–22.

    PubMed  Google Scholar 

  60. Otberg N, Richter H, Knuttel A, Schaefer H, Sterry W, Lademann J. Laser spectroscopic methods for the characterization of open and closed follicles. Laser Phys Lett. 2004;1(1):46–9.

    Google Scholar 

  61. Teichmann A, Ossadnik M, Richter H, Sterry W, Lademann J. Semiquantitative determination of the penetration of a fluorescent hydrogel formulation into the hair follicle with and without follicular closure by microparticles by means of differential stripping. Skin Pharmacol Physiol. 2006;19(2):101–5.

    PubMed  CAS  Google Scholar 

  62. Mills PC, Magnusson BM, Cross SE. Investigation of in vitro transdermal absorption of fentanyl from patches placed on skin samples obtained from various anatomic regions of dogs. Am J Vet Res. 2004;65(12):1697–700.

    PubMed  CAS  Google Scholar 

  63. Wester RC, Maibach HI. In vivo percutaneous absorption and decontamination of pesticides in humans. J Toxicol Environ Health. 1985;16(1):25–37.

    PubMed  CAS  Google Scholar 

  64. Hoath SB, Maibach HI, editors. Neonatal skin: structure and function. 2nd ed. New York: Marcel Dekker; 2003.

    Google Scholar 

  65. Farage M, Maibach HI. The vulvar epithelium differs from the skin: implications for cutaneous testing to address topical vulvar exposures. Contact Dermatitis. 2004;51(4):201–9.

    PubMed  Google Scholar 

  66. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003;111(9):1202–8.

    PubMed  CAS  Google Scholar 

  67. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7(1):155–60.

    PubMed  CAS  Google Scholar 

  68. Mangelsdorf S, Otberg N, Maibach HI, Sinkgraven R, Sterry W, Lademann J. Ethnic variation in vellus hair follicle size and distribution. Skin Pharmacol Physiol. 2006;19(3):159–67.

    PubMed  CAS  Google Scholar 

  69. Reinertson RP, Wheatley VR. Studies on the chemical composition of human epidermal lipids. J Invest Dermatol. 1959;32(1):49–59.

    PubMed  CAS  Google Scholar 

  70. Wesley NO, Maibach HI. Racial (ethnic) differences in skin properties: the objective data. Am J Clin Dermatol. 2003;4(12):843–60.

    PubMed  Google Scholar 

  71. Weigand DA, Haygood C, Gaylor JR. Cell layers and density of Negro and Caucasian stratum corneum. J Invest Dermatol. 1974;62(6):563–8.

    PubMed  CAS  Google Scholar 

  72. Visscher MO, Chatterjee R, Munson KA, Pickens WL, Hoath SB. Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol. 2000;17(1):45–51.

    PubMed  CAS  Google Scholar 

  73. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128(7): 1728–36.

    PubMed  CAS  Google Scholar 

  74. Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L. Skin barrier properties in different body areas in neonates. Pediatrics. 2000;106(1 Pt 1):105–8.

    PubMed  CAS  Google Scholar 

  75. Farage MA, Miller KW, Elsner P, Maibach HI. Structural characteristics of the aging skin: a review. Cutan Ocul Toxicol. 2007;26(4):343–57.

    PubMed  Google Scholar 

  76. Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. 2nd ed. Heidelberg: Springer; 2010.

    Google Scholar 

  77. Roskos KV, Maibach HI. Percutaneous absorption and age. Implications for therapy. Drugs Aging. 1992;2(5):432–49.

    PubMed  CAS  Google Scholar 

  78. Meuling WJ, Franssen AC, Brouwer DH, van Hemmen JJ. The influence of skin moisture on the dermal absorption of propoxur in human volunteers: a consideration for biological monitoring practices. Sci Total Environ. 1997;199(1–2):165–72.

    PubMed  CAS  Google Scholar 

  79. Williams RL, Aston LS, Krieger RI. Perspiration increased human pesticide absorption following surface contact during an indoor scripted activity program. J Expo Anal Environ Epidemiol. 2004;14(2):129–36.

    PubMed  CAS  Google Scholar 

  80. Zhai H, Maibach HI. Effects of skin occlusion on percutaneous absorption: an overview. Skin Pharmacol Appl Skin Physiol. 2001;14(1):1–10.

    PubMed  CAS  Google Scholar 

  81. Treffel P, Muret P, Muret-D’Aniello P, Coumes-Marquet S, Agache P. Effect of occlusion on in vitro percutaneous absorption of two compounds with different physicochemical properties. Skin Pharmacol. 1992;5(2):108–13.

    PubMed  CAS  Google Scholar 

  82. Shomaker TS, Zhang J, Ashburn MA. A pilot study assessing the impact of heat on the transdermal delivery of testosterone. J Clin Pharmacol. 2001;41(6):677–82.

    PubMed  CAS  Google Scholar 

  83. Aly R, Shirley C, Cunico B, Maibach HI. Effect of prolonged occlusion on the microbial flora, pH, carbon dioxide and transepidermal water loss on human skin. J Invest Dermatol. 1978;71(6):378–81.

    PubMed  CAS  Google Scholar 

  84. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 2009;255(1–2):33–7.

    PubMed  CAS  Google Scholar 

  85. Gattu S, Maibach HI. Modest but increased penetration through damaged skin: an overview of the in vivo human model. Skin Pharmacol Physiol. 2011;24(1):2–9.

    PubMed  CAS  Google Scholar 

  86. Bronaugh RL, Stewart RF. Methods for in vitro percutaneous absorption studies V: permeation through damaged skin. J Pharm Sci. 1985;74(10):1062–6.

    PubMed  CAS  Google Scholar 

  87. Hueber F, Besnard M, Schaefer H, Wepierre J. Percutaneous absorption of estradiol and progesterone in normal and appendage-free skin of the hairless rat: lack of importance of nutritional blood flow. Skin Pharmacol. 1994;7(5):245–56.

    PubMed  CAS  Google Scholar 

  88. Hueber F, Wepierre J, Schaefer H. Role of transepidermal and transfollicular routes in percutaneous absorption of hydrocortisone and testosterone: in vivo study in the hairless rat. Skin Pharmacol. 1992;5(2):99–107.

    PubMed  CAS  Google Scholar 

  89. Wester RC, Noonan PK, Maibach HI. Percutaneous absorption of hydrocortisone increases with long-term administration. In vivo studies in the rhesus monkey. Arch Dermatol. 1980;116(2):186–8.

    PubMed  CAS  Google Scholar 

  90. Lu S, Xia D, Huang G, Jing H, Wang Y, Gu H. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf B Biointerfaces. 2010;81(2):406–11.

    PubMed  CAS  Google Scholar 

  91. Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21(3):166–80.

    PubMed  Google Scholar 

  92. Zanette C, Pelin M, Crosera M, Adami G, Bovenzi M, Larese FF, et al. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. Toxicol In Vitro. 2011;25(5): 1053–60.

    PubMed  CAS  Google Scholar 

  93. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 1997;418(1–2):87–90.

    PubMed  CAS  Google Scholar 

  94. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health. 2003;66(20):1909–26.

    CAS  Google Scholar 

  95. Menczel E, Maibach HI. In vitro human percutaneous penetration of benzyl alcohol and testosterone: epidermal-dermal retention. J Invest Dermatol. 1970;54(5):386–94.

    PubMed  CAS  Google Scholar 

  96. Higaki K, Nakayama K, Suyama T, Amnuaikit C, Ogawara K, Kimura T. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin. Int J Pharm. 2005;288(2): 227–33.

    PubMed  CAS  Google Scholar 

  97. Alikhan FS, Maibach H. Topical absorption and systemic toxicity. Cutan Ocul Toxicol. 2011;30(3): 175–86.

    PubMed  Google Scholar 

  98. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11.

    PubMed  Google Scholar 

  99. Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett. 2009;191(1):1–8.

    PubMed  CAS  Google Scholar 

  100. Nadworny PL, Landry BK, Wang J, Tredget EE, Burrell RE. Does nanocrystalline silver have a transferable effect? Wound Repair Regen. 2010;18(2):254–65.

    PubMed  Google Scholar 

  101. Yoshida D, Todo H, Hasegawa T, Sugibayashi K. Dermatopharmacokinetics of salicylate following topical injection in rats: effect of osmotic pressure and injection volume on salicylate disposition. Int J Pharm. 2007;337(1–2):142–7.

    PubMed  CAS  Google Scholar 

  102. Yoshida D, Todo H, Hasegawa T, Sugibayashi K. Effect of molecular weight on the dermatopharmacokinetics and systemic disposition of drugs after intracutaneous injection. Eur J Pharm Sci. 2008;35(1–2):5–11.

    PubMed  CAS  Google Scholar 

  103. Yoshida D, Hasegawa T, Sugibayashi K. Targeting of salicylate to skin and muscle following topical injections in rats. Int J Pharm. 2002;231(2):177–84.

    PubMed  CAS  Google Scholar 

  104. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66(2):274–80.

    PubMed  CAS  Google Scholar 

  105. Oberdorster G, Elder A, Rinderknecht A. Nano-particles and the brain: cause for concern? J Nanosci Nanotechnol. 2009;9(8):4996–5007.

    PubMed  CAS  Google Scholar 

  106. Cho WS, Cho M, Jeong J, Choi M, Han BS, Shin HS, et al. Size-dependent tissue kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2010;245(1):116–23.

    PubMed  CAS  Google Scholar 

  107. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS. Noninvasive imaging of quantum dots in mice. Bioconjug Chem. 2004;15(1):79–86.

    PubMed  CAS  Google Scholar 

  108. Lee HA, Imran M, Monteiro-Riviere NA, Colvin VL, Yu WW, Riviere JE. Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction. Nano Lett. 2007;7(9):2865–70.

    PubMed  CAS  Google Scholar 

  109. King MJ, Michel D, Foldvari M. Evidence for lymphatic transport of insulin by topically applied biphasic vesicles. J Pharm Pharmacol. 2003;55(10): 1339–44.

    PubMed  CAS  Google Scholar 

  110. Jakob T, Ring J, Udey MC. Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol. 2001;108(5):688–96.

    PubMed  CAS  Google Scholar 

  111. Igyarto BZ, Kaplan DH. The evolving function of Langerhans cells in adaptive skin immunity. Immunol Cell Biol. 2010;88(4):361–5.

    PubMed  Google Scholar 

  112. Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180(3):1482–9.

    PubMed  CAS  Google Scholar 

  113. Lindwall G, Hsieh EA, Misell LM, Chai CM, Turner SM, Hellerstein MK. Heavy water labeling of keratin as a non-invasive biomarker of skin turnover in vivo in rodents and humans. J Invest Dermatol. 2006;126(4):841–8.

    PubMed  CAS  Google Scholar 

  114. Zheng Y, Vieille-Petit A, Chodoutaud S, Maibach HI. Dislodgeable stratum corneum exfoliation: role in percutaneous penetration? Cutan Ocul Toxicol. 2011;30(3):198–204.

    PubMed  CAS  Google Scholar 

  115. Ossadnik M, Richter H, Teichmann A, Koch S, Schäfer U, Wepf R, et al. Investigation of differences in follicular penetration of particle-and nonoparticle-containing emulsions by laser scanning microscopy. Laser Phys. 2006;16(5):747–50.

    Google Scholar 

  116. Hatch KL, Maibach HI. Textile chemical finish dermatitis. Contact Dermatitis. 1986;14(1):1–13.

    PubMed  CAS  Google Scholar 

  117. Wester RC, Quan D, Maibach HI. In vitro percutaneous absorption of model compounds glyphosate and malathion from cotton fabric into and through human skin. Food Chem Toxicol. 1996;34(8):731–5.

    PubMed  CAS  Google Scholar 

  118. Snodgrass HL. Permethrin transfer from treated cloth to the skin surface: potential for exposure in humans. J Toxicol Environ Health. 1992;35(2):91–105.

    PubMed  CAS  Google Scholar 

  119. Wester RC, Hartway T, Serranzana S, Maibach HI. Human skin in vitro percutaneous absorption of gaseous ethylene oxide from fabric. Food Chem Toxicol. 1997;35(5):513–5.

    PubMed  CAS  Google Scholar 

  120. Laughlin J. Decontaminating pesticide protective clothing. Rev Environ Contam Toxicol. 1993;130 :79–94.

    PubMed  CAS  Google Scholar 

  121. Fitzgerald RH, Manley-Harris M. Laundering protocols for chlorpyrifos residue removal from pest control operators’ overalls. Bull Environ Contam Toxicol. 2005;75(1):94–101.

    PubMed  CAS  Google Scholar 

  122. Som C, Wick P, Krug H, Nowack B. Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int. 2011;37(6):1131–42.

    PubMed  CAS  Google Scholar 

  123. Wester RC, Hui X, Landry T, Maibach HI. In vivo skin decontamination of methylene bisphenyl isocyanate (MDI): soap and water ineffective compared to polypropylene glycol, polyglycol-based cleanser, and corn oil. Toxicol Sci. 1999;48(1):1–4.

    PubMed  CAS  Google Scholar 

  124. Zendzian RP. Pesticide residue on/in the washed skin and its potential contribution to dermal toxicity. J Appl Toxicol. 2003;23(2):121–36.

    PubMed  CAS  Google Scholar 

  125. Bucks DA, Maibach HI, Guy RH. Percutaneous absorption of steroids: effect of repeated application. J Pharm Sci. 1985;74(12):1337–9.

    PubMed  CAS  Google Scholar 

  126. Courtheoux S, Pechenot D, Bucks DA, Marty JP, Maibach HI, Wepierre J. Effect of repeated skin administration on in vivo percutaneous absorption of drugs. Br J Dermatol. 1986;115 Suppl 31:49–52.

    PubMed  Google Scholar 

  127. Moody RP, Maibach HI. Skin decontamination: importance of the wash-in effect. Food Chem Toxicol. 2006;44(11):1783–8.

    PubMed  CAS  Google Scholar 

  128. Ridout G, Hinz RS, Hostynek JJ, Reddy AK, Wiersema RJ, Hodson CD, et al. The effects of zwitterionic surfactants on skin barrier function. Fundam Appl Toxicol. 1991;16(1):41–50.

    PubMed  CAS  Google Scholar 

  129. Fartasch M, Schnetz E, Diepgen TL. Characterization of detergent-induced barrier alterations—effect of barrier cream on irritation. J Investig Dermatol Symp Proc. 1998;3(2):121–7.

    PubMed  CAS  Google Scholar 

  130. Marrakchi S, Maibach HI. Sodium lauryl sulfate-induced irritation in the human face: regional and age-related differences. Skin Pharmacol Physiol. 2006;19(3):177–80.

    PubMed  CAS  Google Scholar 

  131. Kao J, Carver MP. Cutaneous metabolism of xenobiotics. Drug Metab Rev. 1990;22(4):363–410.

    PubMed  CAS  Google Scholar 

  132. Oesch F, Fabian E, Oesch-Bartlomowicz B, Werner C, Landsiedel R. Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab Rev. 2007; 39(4):659–98.

    PubMed  CAS  Google Scholar 

  133. Kao J, Patterson FK, Hall J. Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo[a]pyrene and testosterone. Toxicol Appl Pharmacol. 1985;81(3 Pt 1):502–16.

    PubMed  CAS  Google Scholar 

  134. Hikima T, Maibach HI. Gender differences of enzymatic activity and distribution of 17beta-hydroxysteroid dehydrogenase in human skin in vitro. Skin Pharmacol Physiol. 2007;20(4):168–74.

    PubMed  CAS  Google Scholar 

  135. Bando H, Mohri S, Yamashita F, Takakura Y, Hashida M. Effects of skin metabolism on percutaneous penetration of lipophilic drugs. J Pharm Sci. 1997;86(6):759–61.

    PubMed  CAS  Google Scholar 

  136. Kao J, Hall J, Shugart LR, Holland JM. An in vitro approach to studying cutaneous metabolism and disposition of topically applied xenobiotics. Toxicol Appl Pharmacol. 1984;75(2):289–98.

    PubMed  CAS  Google Scholar 

  137. Bronaugh RL, Stewart RF, Storm JE. Extent of cutaneous metabolism during percutaneous absorption of xenobiotics. Toxicol Appl Pharmacol. 1989;99(3):534–43.

    PubMed  CAS  Google Scholar 

  138. Kao J, Hall J. Skin absorption and cutaneous first pass metabolism of topical steroids: in vitro studies with mouse skin in organ culture. J Pharmacol Exp Ther. 1987;241(2):482–7.

    PubMed  CAS  Google Scholar 

  139. Bronaugh RL. Methods for in vitro skin metabolism studies. In: Zhai H, Wilhelm KP, Maibach HI, editors. Marzulli and Maibach’s dermatotoxicology. 7th ed. Boca Raton: CRC Press; 2008. p. 373–6.

    Google Scholar 

  140. Jewell C, Heylings J, Clowes HM, Williams FM. Percutaneous absorption and metabolism of dinitrochlorobenzene in vitro. Arch Toxicol. 2000;74(7): 356–65.

    PubMed  CAS  Google Scholar 

  141. Popov AP, Zvyagin AV, Lademann J, Roberts MS, Sanchez W, Priezzhev AV, et al. Designing inorganic light-protective skin nanotechnology products. J Biomed Nanotechnol. 2010;6(5):432–51.

    PubMed  CAS  Google Scholar 

  142. Mortensen LJ, Oberdorster G, Pentland AP, Delouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 2008;8(9):2779–87.

    PubMed  CAS  Google Scholar 

  143. Marzulli FN, Maibach HI. Relevance of animal models—the hexachlorophene story. In: Maibach HI, editor. Animal models in dermatology. Edinburgh: Churchill Living Stone; 1975. p. 156–67.

    Google Scholar 

  144. Nigg HN, Stamper JH. Biological monitoring for pesticide dose determination. In: Wang RGM, Franklin CA, Honeycutt RC, Reinert JC, editors. Biological monitoring for pesticide exposure: measurement, estimation, and risk reduction. Washington, DC: American Chemical Society; 1989. p. 6–27.

    Google Scholar 

  145. Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect. 2007;115(9):1339–43.

    PubMed  CAS  Google Scholar 

  146. Yeh TK, Wu JP, Chang LW, Tsai MH, Chang WH, Tsai HT, et al. Comparative tissue distributions of cadmium chloride and cadmium-based quantum dot 705 in mice: safety implications and applications. Nanotoxicology. 2011;5(1):91–7.

    PubMed  CAS  Google Scholar 

  147. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine. 2009;5(2):162–9.

    PubMed  CAS  Google Scholar 

  148. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol. 2007; 20(1):10–20.

    PubMed  CAS  Google Scholar 

  149. Teichmann A, Jacobi U, Ossadnik M, Richter H, Koch S, Sterry W, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125(2):264–9.

    PubMed  CAS  Google Scholar 

  150. Bronaugh RL, Maibach HI, editors. Percutaneous absorption: drugs, cosmetics, mechanisms, methodology. 4th ed. New York: Marcel Dekker; 2005.

    Google Scholar 

  151. Gilman SD, Gee SJ, Hammock BD, Vogel JS, Haack K, Buchholz BA, et al. Analytical performance of accelerator mass spectrometry and liquid scintillation counting for detection of 14C-labeled atrazine metabolites in human urine. Anal Chem. 1998;70(16): 3463–9.

    PubMed  CAS  Google Scholar 

  152. Blume-Peytavi U, Vogt A. Human hair follicle: reservoir function and selective targeting. Br J Dermatol. 2011;165 Suppl 2:13–7.

    PubMed  CAS  Google Scholar 

  153. Lademann J, Knorr F, Richter H, Blume-Peytavi U, Vogt A, Antoniou C, et al. Hair follicles—an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite—Universitatsmedizin Berlin, Germany. Skin Pharmacol Physiol. 2008;21(3):150–5.

    PubMed  CAS  Google Scholar 

  154. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route—research progress and future perspectives. Eur J Pharm Biopharm. 2009;71(2):173–80.

    PubMed  CAS  Google Scholar 

  155. OECD (2004) Guidelines for the testing of chemicals: test no. 427: skin absorption: in vivo method. Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  156. Feldmann RJ, Maibach HI. Percutaneous penetration of steroids in man. J Invest Dermatol. 1969;52(1): 89–94.

    PubMed  CAS  Google Scholar 

  157. Maibach HI, Wester RC. Percutaneous absorption: in vivo methods in humans and animals. J Am Coll Toxicol. 1989;8(5):803–13.

    Google Scholar 

  158. Bronaugh RL, Wester RC, Bucks D, Maibach HI, Sarason R. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem Toxicol. 1990;28(5):369–73.

    PubMed  CAS  Google Scholar 

  159. Wester RC, Maibach HI. In vivo animal models for percutaneous absorption. In: Bronaugh R, Maibach H, editors. Percutaneous absorption. New York: Marcel Dekker; 1985. p. 251–66.

    Google Scholar 

  160. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171(3):99–110.

    PubMed  CAS  Google Scholar 

  161. Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J. Evaluation of dermal and eye irritation and skin sensitization due to carbon nanotubes. Regul Toxicol Pharmacol. 2011;61(3):276–81.

    PubMed  CAS  Google Scholar 

  162. Tregear RT. Physical properties of the skin. New York: Academic; 1966.

    Google Scholar 

  163. Crutcher W, Maibach HI. The effect of perfusion rate on in vitro percutaneous penetration. J Invest Dermatol. 1969;53(4):264–9.

    PubMed  CAS  Google Scholar 

  164. Chang SK, Brownie C, Riviere JE. Percutaneous absorption of topical parathion through porcine skin: in vitro studies on the effect of environmental perturbations. J Vet Pharmacol Ther. 1994;17(6):434–9.

    PubMed  CAS  Google Scholar 

  165. Chang SK, Riviere JE. Percutaneous absorption of parathion in vitro in porcine skin: effects of dose, temperature, humidity, and perfusate composition on absorptive flux. Fundam Appl Toxicol. 1991;17(3):494–504.

    PubMed  CAS  Google Scholar 

  166. Reifenrath WG, Hawkins GS, Kurtz MS. Percutaneous penetration and skin retention of topically applied compounds: an in vitro-in vivo study. J Pharm Sci. 1991;80(6):526–32.

    PubMed  CAS  Google Scholar 

  167. van de Sandt JJ, van Burgsteden JA, Cage S, Carmichael PL, Dick I, Kenyon S, et al. In vitro predictions of skin absorption of caffeine, testosterone, and benzoic acid: a multi-centre comparison study. Regul Toxicol Pharmacol. 2004;39(3):271–81.

    PubMed  Google Scholar 

  168. Behl CR, Barrett M. Hydration and percutaneous absorption II: influence of hydration on water and alkanol permeation through Swiss mouse skin; comparison with hairless mouse. J Pharm Sci. 1981;70(11):1212–5.

    PubMed  CAS  Google Scholar 

  169. Behl CR, El-Sayed AA, Flynn GL. Hydration and percutaneous absorption IV: influence of hydration on n-alkanol permeation through rat skin; comparison with hairless and Swiss mice. J Pharm Sci. 1983;72(1):79–82.

    PubMed  CAS  Google Scholar 

  170. Behl CR, Flynn GL, Kurihara T, Harper N, Smith W, Higuchi WI, et al. Hydration and percutaneous absorption: I. Influence of hydration on alkanol permeation through hairless mouse skin. J Invest Dermatol. 1980;75(4):346–52.

    PubMed  CAS  Google Scholar 

  171. Moss GP, Dearden JC, Patel H, Cronin MT. Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol In Vitro. 2002;16(3):299–317.

    PubMed  CAS  Google Scholar 

  172. Frasch HF, Barbero AM, Hettick JM, Nitsche JM. Tissue binding affects the kinetics of theophylline diffusion through the stratum corneum barrier layer of skin. J Pharm Sci. 2011;100(7):2989–95.

    PubMed  CAS  Google Scholar 

  173. Anissimov YG, Roberts MS. Diffusion modelling of percutaneous absorption kinetics: 4. Effects of a slow equilibration process within stratum corneum on absorption and desorption kinetics. J Pharm Sci. 2009;98(2):772–81.

    PubMed  CAS  Google Scholar 

  174. Aschberger K, Micheletti C, Sokull-Kluttgen B, Christensen FM. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int. 2011;37(6):1143–56.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai A. Ngo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ngo, M.A., O’Malley, M., Maibach, H.I. (2013). Perspectives on Percutaneous Penetration of Nanomaterials. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics