Skip to main content

Nanotoxicology

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

The development of biomedical and cosmetic products containing nanoparticles is on the rise, and there is a growing concern about their use and potential toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.

    PubMed  Google Scholar 

  2. Eastern Research Group. State of the science literature review: nano titanium dioxide environmental matters. Washington: United States Environmental Protection Agency; 2010. p. 5–7.

    Google Scholar 

  3. Thomas T, Thomas K, Sadrieh N, Savage N, Adair P, Bronaugh R. Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials. Toxicol Sci. 2006;91:14–9.

    PubMed  CAS  Google Scholar 

  4. Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res. 2011;303:533–50.

    PubMed  CAS  Google Scholar 

  5. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson MG. Nanoparticles: small and mighty. Int J Dermatol. 2011;50:247–54.

    PubMed  CAS  Google Scholar 

  6. Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol. 2009;61:685–92.

    PubMed  CAS  Google Scholar 

  7. Magnusson BM, Walters KA, Roberts MS. Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev. 2001;50:205–27.

    PubMed  CAS  Google Scholar 

  8. Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci. 2008;101:4–21.

    PubMed  CAS  Google Scholar 

  9. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci. 2006;91:227–36.

    PubMed  CAS  Google Scholar 

  10. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup Environ Med. 2000;57:685–91.

    PubMed  CAS  Google Scholar 

  11. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001;175:191–9.

    PubMed  CAS  Google Scholar 

  12. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.

    PubMed  CAS  Google Scholar 

  13. Donaldson K, Brown D, Clouter A, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15:213–20.

    PubMed  CAS  Google Scholar 

  14. Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita. 2003;39:405–10.

    PubMed  CAS  Google Scholar 

  15. Choksi AN, Poonawalla T, Wilkerson MG. Nanoparticles: a closer look at their dermal effects. J Drugs Dermatol. 2010;9(5):475–81.

    PubMed  Google Scholar 

  16. Borm PJ, Robbings D, Haubold S, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11.

    PubMed  Google Scholar 

  17. Hallock MF, Greenley P, DiBerardinis L, Kallin D. Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J Chem Health Safety. 2009;16:16–23.

    CAS  Google Scholar 

  18. Kimbrell G. Nanotechnology and nanomaterials in consumer products: regulatory challenges and necessary amendments. FDA Public Meeting on Nanotechnology. Available at http://Nano_FDA_Public%20Meeting_10_06.pdf. Accessed 20 Dec 2011.

    Google Scholar 

  19. Amato I. Making the right stuff. Sci News. 1989;136:108–10.

    Google Scholar 

  20. Donaldson K, Tran CL. An introduction to the short-term toxicology of respirable industrial fibers. Mutat Res. 2004;553:5–9.

    PubMed  CAS  Google Scholar 

  21. Greim H, Borm P, Schins R, et al. Toxicity of fibers and particles—report of the workshop held in Munich, Germany, 26–27 October 2000. Inhal Toxicol. 2001;13:737–54.

    PubMed  CAS  Google Scholar 

  22. IARC (International Agency for Research on Cancer). Manmade vitreous fibres. IARC Monogr Eval Carcinog Risks Hum. 2002;81:1–418.

    Google Scholar 

  23. Donaldson K, Aitken R, Tran L, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92:5–22.

    PubMed  CAS  Google Scholar 

  24. Royal Society and Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. London: Royal Society; 2004. p. 35–49.

    Google Scholar 

  25. Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3(7):423–8.

    PubMed  CAS  Google Scholar 

  26. Kamp DW, Graceffa P, Pryor WA, Weitzman SA. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12:293–315.

    PubMed  CAS  Google Scholar 

  27. Ye J, Shi X, Jones W. Critical role of glass fiber length in TNF-alpha production and transcription factor activation in macrophages. Am J Physiol. 1999;276:426–34.

    Google Scholar 

  28. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157:1666–80.

    PubMed  CAS  Google Scholar 

  29. IARC (International Agency for Research on Cancer). Mechanisms of mineral fibre carcinogenesis. IARC Monogr Eval Carcinog Risks Hum. 1999;140:11–34.

    Google Scholar 

  30. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in ­epidermal keratinocytes. J Invest Dermatol. 2007;1:143–53.

    Google Scholar 

  31. Warheit DB, Laurence GR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative pulmonary toxicity assessment of single-walled carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.

    PubMed  CAS  Google Scholar 

  32. Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem. 2005;24:2757–62.

    PubMed  CAS  Google Scholar 

  33. Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem. 2006;5:1132–7.

    Google Scholar 

  34. de Vuyst P, Camus P. The past and present of pneumocondioses. Curr Opin Pulm Med. 2000;6:151–6.

    PubMed  Google Scholar 

  35. Stremmel W, Meyerrose KW, Niederau C, et al. Wilson disease: clinical presentation, treatment, and survival. Ann Intern Med. 1991;115:720–6.

    PubMed  CAS  Google Scholar 

  36. Niederau C, Fischer R, Sonnenberg A, et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med. 1985;313:1256–62.

    PubMed  CAS  Google Scholar 

  37. Blessed G, Tomlinson BE, Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br J Psychiatry. 1968;114:797–811.

    PubMed  CAS  Google Scholar 

  38. Wiginton CD, Kelly B, Oto A, et al. Gadolinium-based contrast exposure, nephrogenic systemic fibrosis, and gadolinium detection in tissue. Am J Roentgenol. 2008;190:1060–8.

    Google Scholar 

  39. Gorelik J, Shevchuk A, Ramalho M, et al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence aging: application to single virus-like particle entry into a cell. Proc Natl Acad Sci U S A. 2002;99:16018–23.

    PubMed  CAS  Google Scholar 

  40. Skebo JE, Brabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol. 2007;26:135–41.

    PubMed  CAS  Google Scholar 

  41. Manna SK, Sarkar S, Barr J, et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett. 2005;5:1676–84.

    PubMed  CAS  Google Scholar 

  42. Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1:176–82.

    Google Scholar 

  43. Shvedova AA, Castranova V, Kisin ER, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66:1909–26.

    PubMed  CAS  Google Scholar 

  44. SCCNFP. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning titanium dioxide. European Commission, Brussels, Belgium. Available at http://ec.europa.eu/health/ph_risk/committees/sccp/sccp_opinions_en.htm. Accessed 24 Oct 2000

  45. SCCNFP. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning zinc oxide. European Commission, Brussels, Belgium. Available at http://ec.europa.eu/health/ph_risk/committees/sccp/sccp_opinions_en.htm. Accessed 24 June 2003.

  46. Sato Y, Yokoyama A, Shibata K, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst. 2005;1:176–82.

    PubMed  CAS  Google Scholar 

  47. Rosenman KD, Moss A, Kon S. Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Environ Med. 1979;21:430–5.

    CAS  Google Scholar 

  48. Hill WR. Argyria: the pharmacology of silver. South Med J. 1941;34:340.

    Google Scholar 

  49. Sawosz E, Binek M, Grodzik M, et al. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr. 2007;61:444–51.

    PubMed  CAS  Google Scholar 

  50. Wakelyn PJ. Cotton yarn manufacturing. In: Ivester AL, Neefus JD, editors. ILO encyclopedia of occupational health and safety. 4th ed. Geneva, Switzerland: International Labour Office; 1994. p. 89.9–89.11.

    Google Scholar 

  51. Blume-Peytavi U, Massoudy L, Patzelt A, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76:450–3.

    PubMed  CAS  Google Scholar 

  52. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route-research progress and future perspectives. Eur J Pharm Biopharm. 2009;71:173–80.

    PubMed  CAS  Google Scholar 

  53. Lademann J, Otberg N, Richter H, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Physiol. 2001;21:274–82.

    Google Scholar 

  54. Meidan VM. Methods for quantifying intrafollicular drug delivery: a critical appraisal. Expert Opin Drug Deliv. 2010;7:1095–108.

    PubMed  CAS  Google Scholar 

  55. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim. 1999;35:318–26.

    PubMed  CAS  Google Scholar 

  56. Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122:14–9.

    PubMed  CAS  Google Scholar 

  57. Schaefer H, Lademann J. The role of follicular penetration. A differential view. Skin Pharmacol Appl Skin Physiol. 2001;14:23–7.

    PubMed  Google Scholar 

  58. Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 1999;16:461–521.

    PubMed  CAS  Google Scholar 

  59. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: invitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20:148–54.

    PubMed  CAS  Google Scholar 

  60. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide microparticles in a sunscreen ­formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12:247–56.

    PubMed  CAS  Google Scholar 

  61. Meidan VM, Bonner MC, Michniak BB. Transfollicular drug delivery—is it a reality? Int J Pharm. 2005;306:1–14.

    PubMed  CAS  Google Scholar 

  62. Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U. Follicular targeting—a promising tool in selective dermatotherapy. J Investig Dermatol Symp Proc. 2005;10:252–5.

    PubMed  Google Scholar 

  63. Lademann J, Otberg N, Jacobi U, Hoffman RM, Blume-Peytavi U. Follicular penetration and targeting. J Investig Dermatol Symp Proc. 2005;10:301–3.

    PubMed  Google Scholar 

  64. Schaefer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59:427–43.

    CAS  Google Scholar 

  65. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99:53–62.

    PubMed  CAS  Google Scholar 

  66. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physiochemical properties. Toxicol Sci. 2006;91:159–65.

    PubMed  CAS  Google Scholar 

  67. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.

    PubMed  CAS  Google Scholar 

  68. Corachan M, Tura JM, Campo E, Soley M, Traveria A. Poedoconiosis in Aequatorial Guinea. Report of two cases from different geological environments. Trop Geogr Med. 1988;40:359–64.

    PubMed  CAS  Google Scholar 

  69. Blundell G, Henderson WJ, Price EW. Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol. 1989;83(4):381–5.

    PubMed  CAS  Google Scholar 

  70. Kim S, Lim YS, Soltesz EG, et al. Near infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    PubMed  CAS  Google Scholar 

  71. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity. 2004;21:279–88.

    PubMed  CAS  Google Scholar 

  72. Sato K, Imai Y, Irimura RT. Contribution of dermal macrophage trafficking in the sensitization phase of contact hypersensitivity. J Immunol. 1998;161:6835–44.

    PubMed  CAS  Google Scholar 

  73. Oberdörster G, Morrow PE, Spurny K. Size dependent lymphatic short term clearance of amosite fibers in the lung. Ann Occup Hyg. 1988;32:149–56.

    Google Scholar 

  74. Kennedy P, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 2002;73:237–8.

    PubMed  CAS  Google Scholar 

  75. Terasaki S, Kameyama T, Yamamoto S. A case of zoster in the 2nd and 3rd branches of the trigeminal nerve associated with simultaneous herpes labialis infection—a case report. Kurume Med J. 1997;44:61–6.

    PubMed  CAS  Google Scholar 

  76. Arvidson B. A review of axonal transport of metals. Toxicology. 1994;88:1–14.

    PubMed  CAS  Google Scholar 

  77. Malmgren L, Olsson Y, Olsson T, Kristensson K. Uptake and retrograde axonal transport of various exogenous macromolecules in normal and crushed hypoglossal nerves. Brain Res. 1978;153:477–93.

    PubMed  CAS  Google Scholar 

  78. Olsson T, Kristensson K. Neuronal uptake of iron: somatopetal axonal transport and fate of cationized and native ferretin, and iron-dextran after intramuscular injections. Neuropathol Appl Neurobiol. 1981;7:87–95.

    PubMed  CAS  Google Scholar 

  79. Oldfors A, Fardeau M. The permeability of the basal lamina at the neuromuscular junction. An ultrastructural study of rat skeletal muscle using particulate tracers. Neuropathol Appl Neurobiol. 1983;9:419–32.

    PubMed  CAS  Google Scholar 

  80. Jung S, Otberg N, Thiede G, et al. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J Invest Dermatol. 2006;126:1728–32.

    PubMed  CAS  Google Scholar 

  81. Mecke A, Uppuluri S, Sassanella TM, Lee DK, Ramamoorthy A, Baker Jr JR, et al. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids. 2004;132:3–14.

    PubMed  CAS  Google Scholar 

  82. Gumbleton M. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv Drug Deliv Rev. 2001;49:281–300.

    PubMed  CAS  Google Scholar 

  83. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001;47:65–81.

    PubMed  CAS  Google Scholar 

  84. Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol. 2004;4:484–8.

    PubMed  CAS  Google Scholar 

  85. Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target. 2002;10:317–25.

    PubMed  CAS  Google Scholar 

  86. Kato T, Yashiiro T, Murata Y, et al. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res. 2003;311:47–51.

    PubMed  Google Scholar 

  87. Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect. 1992;97:193–9.

    PubMed  Google Scholar 

  88. Nikula KJ, Avila KJ, Griffith WC, Mauderly JL. Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust. Fundam Appl Toxicol. 1997;37:37–53.

    PubMed  CAS  Google Scholar 

  89. Gonzalez S, Fernandez-Lorente M, Gilaberte-Calzada Y. The latest on skin photoprotection. Clin Dermatol. 2008;26:614–26.

    PubMed  Google Scholar 

  90. Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N. The photogenotoxicity of titanium dioxide particles. Mutat Res. 1997;394:125–32.

    PubMed  CAS  Google Scholar 

  91. Allen NS, Edge M, Sandoval G, Verran J, Stratton J, Maltby J. Photocatalytic coatings for environmental applications. Photochem Photobiol. 2005;81:279–90.

    PubMed  CAS  Google Scholar 

  92. Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WH, Wang CC. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs. 2008;32:167–74.

    PubMed  CAS  Google Scholar 

  93. Wu J, Liu W, Xue C, et al. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett. 2009;191:1–8.

    PubMed  CAS  Google Scholar 

  94. Dussert AS, Gooris E. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci. 1997;19:119–29.

    PubMed  CAS  Google Scholar 

  95. Uchino T, Tokunaga H, Ando M, et al. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol In Vitro. 2002;16:629–35.

    PubMed  CAS  Google Scholar 

  96. Van RI. Beyond skin feel: innovative methods for developing complex sensory profiles with silicones. J Cosmet Dermatol. 2006;5:61–7.

    Google Scholar 

  97. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med. 1997;23:851–8.

    PubMed  CAS  Google Scholar 

  98. Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007;28:5344–57.

    PubMed  CAS  Google Scholar 

  99. Mohamed F, van der Walle CF. PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA. Int J Pharm. 2006;311:97–107.

    PubMed  CAS  Google Scholar 

  100. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35:1068–83.

    PubMed  Google Scholar 

  101. Veronesi B, Oortgiesen M. Neurogenic inflammation and particulate matter (PM) air pollutants. Neurotoxicology. 2001;22:795–810.

    CAS  Google Scholar 

  102. Pooler M, Makwana O, Carter J, Beck-Speier I, Kreyling W, Veronesi B. Electrostatic charge on nanoparticles activates CNS macrophages (microglia). The Toxicologist CD- An Official Journal of the Society of Toxicology. 2005,;84..

    Google Scholar 

  103. Ullrich SE. Dermal application of JP-8 jet fuel induces immune suppression. Toxicol Sci. 1999;52:61–7.

    PubMed  CAS  Google Scholar 

  104. Long T, Saleh N, Tilton R, et al. Titanium dioxide (P25) produced reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40:4346–52.

    PubMed  CAS  Google Scholar 

  105. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 2004;61:422–47.

    Google Scholar 

  106. Veronesi B, de Haar C, Lee L, Oortgiesen M. The surface charge of visible particulate matter predicts biological activation in human bronchial epithelial cells (BEAS-2B). Toxicol Appl Pharmacol. 2002;178:144–54.

    PubMed  CAS  Google Scholar 

  107. Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.

    PubMed  CAS  Google Scholar 

  108. Wang S, Hunter L, Arslan Z, Wilkerson M, Wickliffe J. Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells. Environ Mol Mutagen. 2011;52:614–22.

    PubMed  CAS  Google Scholar 

  109. Preining O. The physical nature of very, very small particles and its impact on their behavior. J Aerosol Sci. 1998;29:481–95.

    CAS  Google Scholar 

  110. Nel A, Xia T, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.

    PubMed  CAS  Google Scholar 

  111. Ackerman MA, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A. 2002;99:12617–21.

    Google Scholar 

  112. Ogawara K, Furumoto K, Takakura Y, Hashida M, Higaki K, Kimura T. Surface hydrophobicity of particles is not necessarily the most important determinant in their in vivo disposition after intravenous administration in rats. J Control Release. 2001;77:191–8.

    PubMed  CAS  Google Scholar 

  113. Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ. Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomedicine. 2005;1:293–9.

    PubMed  CAS  Google Scholar 

  114. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58:211–6.

    PubMed  CAS  Google Scholar 

  115. Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, et al. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst. 2000;96:5–74.

    PubMed  Google Scholar 

  116. Donaldson K, Li XY, MacNee W. Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci. 1998;29:553–60.

    CAS  Google Scholar 

  117. Driscoll KE. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol. 1996;8:139–53.

    Google Scholar 

  118. Oberdörster G, Yu CP. The carcinogenic potential of inhaled diesel exhaust: a particle effect? J Aerosol Sci. 1990;21:S397–401.

    Google Scholar 

  119. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–26.

    PubMed  CAS  Google Scholar 

  120. Tran CL, Jones AD, Cullen RT, Donaldson K. Influence of particle characteristics on the clearance of low toxicity dusts from lungs. J Aerosol Sci. 1998;29:S1269–70.

    CAS  Google Scholar 

  121. Lomer MCE, Thompson RPH, Powel JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Chron’s disease. Proc Nutr Soc. 2002;61:123–30.

    PubMed  Google Scholar 

  122. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50:107–42.

    PubMed  CAS  Google Scholar 

  123. Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol. 1990;42:821–6.

    PubMed  CAS  Google Scholar 

  124. Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease. The Exposure and Risk assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation. 2002;106:933–8.

    PubMed  Google Scholar 

  125. Wichmann H-E, Spix C, Tuch T, Wolke G, Peters A, Heinrich J, et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass. Res Rep Health Eff Inst. 2000;98:5–86.

    PubMed  Google Scholar 

  126. Kainthan RK, Gnanamani M, Ganguli M, et al. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials. 2006;27:5377–90.

    PubMed  CAS  Google Scholar 

  127. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146:882–93.

    PubMed  CAS  Google Scholar 

  128. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, et al. Translocation and potential neurological effects of fine and ultrafine particles: a critical update. Part Fibre Toxicol. 2006;3:1–13.

    Google Scholar 

  129. Campbell A, Oldham M, Becaria A, et al. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005;26:133–40.

    PubMed  CAS  Google Scholar 

  130. Calderon-Garciduenas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.

    PubMed  CAS  Google Scholar 

  131. Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci. 2006;92:456–63.

    PubMed  CAS  Google Scholar 

  132. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76:77–98.

    PubMed  CAS  Google Scholar 

  133. Emerit J, Edeas M, Bricaire F. neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46.

    PubMed  CAS  Google Scholar 

  134. De Georgi F, Lartique L, Bauer MK, et al. The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J. 2002;16:607–9.

    Google Scholar 

  135. Fernandes MA, Santos MS, Vicente JA, et al. Effects of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) on mitochondrial bioenergetics and oxidative stress: a comparative study. Mitochondrion. 2003;3:47–59.

    PubMed  CAS  Google Scholar 

  136. Colton CA, Chernyshev ON, Gilbert DL, Vitek MP. Microglial contribution to oxidative stress in Alzheimer’s disease. Ann N Y Acad Sci. 2000;889:292–307.

    Google Scholar 

  137. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304:1–7.

    PubMed  CAS  Google Scholar 

  138. Andrievsky G, Klochkov V, Derevyanchenko L. Is the C60 fullerene molecule toxic. Fuller Nanotub Carbon Nanostruct. 2005;13:363–76.

    CAS  Google Scholar 

  139. Zhu S, Oberdörster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res. 2006;62:S5–9.

    PubMed  CAS  Google Scholar 

  140. Müller RH, Keck CM. Drug delivery to the brain-realization by novel drug carriers. J Nanosci Nanotechnol. 2004;4:471–83.

    PubMed  Google Scholar 

  141. Bodain D, Howe HA. Experimental studies on intraneural spread of poliomyelitis virus. Bull Johns Hopkins Hosp. 1941;69:248–67.

    Google Scholar 

  142. Bodain D, Howe HA. The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp. 1941;69:79–85.

    Google Scholar 

  143. Howe HA, Bodain D. Portals of entry of poliomyelitis virus in the chimpanzee. Proc Soc Exp Biol Med. 1940;43:718–21.

    Google Scholar 

  144. Elder A, Gelein R, Silva V, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.

    PubMed  CAS  Google Scholar 

  145. Nakamura M, Jo J, Tabata Y, Ishikawa O. Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (alopecia areata) in a C3H/HeJ mouse model. Am J Pathol. 2008;172:650–8.

    PubMed  CAS  Google Scholar 

  146. Sharma V, Shukla RK, Saxena N, et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009;185:21–218.

    Google Scholar 

  147. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun. 2005;7:121–3.

    Google Scholar 

  148. Borm PJ, Schins RP, Albrecht C. Inhaled particles and lung cancer: Part B. Paradigms and risk assessment. Int J Cancer. 2004;110:3–14.

    PubMed  CAS  Google Scholar 

  149. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006;7:295–6.

    PubMed  Google Scholar 

  150. Dankovic D, Kuempel E, Wheeler M. An approach to risk assessment for TiO2. Inhal Toxicol. 2007;19:205–12.

    PubMed  CAS  Google Scholar 

  151. IARC (International Agency for Research on Cancer). Carbon black, titanium dioxide, talc. IARC Monogr Eval Carcinog Risks Hum. 2010;93:1–466.

    Google Scholar 

  152. Gurr J-R, Wang ASS, Chen C-H, Jan K-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213:66–73.

    PubMed  CAS  Google Scholar 

  153. Kang JL, Moon C, Lee HS, et al. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health A. 2008;71:478–85.

    PubMed  CAS  Google Scholar 

  154. Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49:399–405.

    PubMed  CAS  Google Scholar 

  155. Falck G, Lindberg H, Suhonen S, et al. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol. 2009;28:339–52.

    PubMed  CAS  Google Scholar 

  156. Lee KP, Trochimowicz HJ, Reinhardt CF. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol. 1985;79:179–92.

    PubMed  CAS  Google Scholar 

  157. Heinrich U, Fuhst R, Rittinghausen S, et al. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 1995;7:533–56.

    CAS  Google Scholar 

  158. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7:155–60.

    PubMed  CAS  Google Scholar 

  159. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003;111:1202–8.

    PubMed  CAS  Google Scholar 

  160. Vogt A, Combadiere B, Hadam S, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a  +  cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126:1316–22.

    PubMed  CAS  Google Scholar 

  161. Vogt A, Mahe B, Costaglioloa D, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180:1482–9.

    PubMed  CAS  Google Scholar 

  162. Jiang SJ, Chen JY, Lu ZF, Yao J, Che DF, Zhou XJ. Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J Dermatol Sci. 2006;44:29–36.

    PubMed  CAS  Google Scholar 

  163. Yamamoto T, Kurasawa M, Hattori T, Maeda T, Nakano H, Sasaki H. Relationship between expression of tight junction-related molecules and perturbed epidermal barrier function in UVB-irradiated hairless mice. Arch Dermatol Res. 2008;300:61–8.

    PubMed  CAS  Google Scholar 

  164. Mortensen LJ, Oberdörster G, Pentland AP, Delouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 2008;8:2779–87.

    PubMed  CAS  Google Scholar 

  165. Bhattacharys K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol. 2009;6:17.

    Google Scholar 

  166. Daughton C, Ternes T. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 1999;107:907–38.

    PubMed  CAS  Google Scholar 

  167. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 2011;37:517–31.

    PubMed  CAS  Google Scholar 

  168. Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42:8959–64.

    PubMed  CAS  Google Scholar 

  169. Louma SN, Rainbow PS. Metal contamination in aquatic environments: science and lateral management. Cambridge: Cambridge University Press; 2008.

    Google Scholar 

  170. Asharani PV, Wu YL, Gong ZY, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19:255102.

    PubMed  CAS  Google Scholar 

  171. Yeo MK, Pak SW. Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Mol Cell Toxicol. 2008;4:311–7.

    Google Scholar 

  172. Bilberg K, Malte H, Wang T, Baatrup E. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol. 2010;96:159–65.

    PubMed  CAS  Google Scholar 

  173. Scown T, Santos E, Johnston B, et al. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci. 2010;115:521–34.

    PubMed  CAS  Google Scholar 

  174. Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129:1156–64.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison C. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lowe, A.C., Hunter-Ellul, L.A., Wilkerson, M.G. (2013). Nanotoxicology. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics