The Skin Immune System

Chapter

Abstract

The skin is the largest organ in the body. It serves many functions, including thermoregulation, endocrine homeostasis, and transduction of environmental stimuli. The latter can be from simple registering of heat and cold to photoreception [1] or to the complex haptic processing required to read Braille. The skin actively and passively defends against chemical, thermal, electrical, radioactive, physical, and other environmental and microbial insults. The latter defenses fall under the broad purview of the skin immune system. Nanotechnology exploits the unique properties of matter on the nanoscale to selectively target the skin immune system, either for the purposes of augmenting immunity, in the case of immunodeficiency or in generating an immune response against a tumor or pathogen, or for the purposes of selectively inhibiting the immune system, for example, to treat autoimmune disease or prevent the rejection of a grafted organ.

Keywords

Nickel Angiotensin Methotrexate Microbe PGE2 

References

  1. 1.
    Xiang Y, et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 2010;468(7326):921–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Dahl MV. Dermatophytosis and the immune response. J Am Acad Dermatol. 1994;31(3 Pt 2):S34–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Vemula PK, Anderson RR, Karp JM. Animal models for nickel allergy. Nat Nanotechnol. 2011;6(9):533.CrossRefGoogle Scholar
  4. 4.
    Vemula PK, Anderson RR, Karp JM. Nanoparticles reduce nickel allergy by capturing metal ions. Nat Nanotechnol. 2011;6(5):291–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia Bartels N, et al. Effect of standardized skin care regimens on neonatal skin barrier function in different body areas. Pediatr Dermatol. 2010;27(1):1–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Oyoshi MK, et al. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol. 2009;102:135–226.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132(3 Pt 2):887–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Ozdemir M, et al. Serum leptin, adiponectin, resistin and ghrelin levels in psoriatic patients treated with cyclosporin. J Dermatol. 2012;39(5):443–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Gerdes S, et al. Leptin, adiponectin, visfatin and retinol-binding protein-4—mediators of comorbidities in patients with psoriasis? Exp Dermatol. 2012;21(1):43–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Arck PC, et al. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126(8):1697–704.PubMedCrossRefGoogle Scholar
  11. 11.
    Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.PubMedGoogle Scholar
  12. 12.
    Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Bilbo SD, et al. Reconstitution of the human biome as the most reasonable solution for epidemics of allergic and autoimmune diseases. Med Hypotheses. 2011;77(4):494–504.PubMedCrossRefGoogle Scholar
  14. 14.
    Lood R, Collin M. Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics. 2011;12:198.PubMedCrossRefGoogle Scholar
  15. 15.
    Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol. 2012;34(2):201–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Motomura Y, et al. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol. 2009;155(1):88–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Wolff MJ, Broadhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol. 2012;28(5):187–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci. 2010;17:53.PubMedCrossRefGoogle Scholar
  19. 19.
    Ng EW, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Nasir A. Nanodermatology: a bright glimpse just beyond the horizon—part I. Skin Therapy Lett. 2010;15(8):1–4.PubMedGoogle Scholar
  21. 21.
    Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface. 2010;7 Suppl 1:S55–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Kunjachan S, et al. Theranostic systems and strategies for monitoring nanomedicine-mediated drug targeting. Curr Pharm Biotechnol. 2012;13(4):609–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Amiri H, Mahmoudi M, Lascialfari A. Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale. 2011;3(3):1022–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44(10):1061–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44(10):1071–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Yoo D, et al. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44(10):863–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim ST, et al. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie. 2009;64(8):510–4.PubMedGoogle Scholar
  28. 28.
    Baspinar Y, Keck CM, Borchert HH. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383(1–2):201–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Padois K, et al. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416(1):300–4.PubMedGoogle Scholar
  30. 30.
    Gelfuso GM, et al. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. J Microencapsul. 2011;28(7):650–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ahmed AR, et al. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N Engl J Med. 2006;355(17):1772–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Zippin JH. The genetics of psoriasis. J Drugs Dermatol. 2009;8(4):414–7.PubMedGoogle Scholar
  33. 33.
    Hofstra JJ, et al. Treatment of hereditary angioedema with nanofiltered C1-esterase inhibitor concentrate (Cetor(R)): multi-center phase II and III studies to assess pharmacokinetics, clinical efficacy and safety. Clin Immunol. 2012;142(3):280–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Hollander SM, Joo SS, Wedner HJ. Factors that predict the success of cyclosporine treatment for chronic urticaria. Ann Allergy Asthma Immunol. 2011;107(6):523–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14(1):139–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez-Machin I, et al. T cell activity in successful treatment of chronic urticaria with omalizumab. Clin Mol Allergy. 2011;9:11.PubMedCrossRefGoogle Scholar
  37. 37.
    Sagi L, et al. Evidence for methotrexate as a useful treatment for steroid-dependent chronic urticaria. Acta Derm Venereol. 2011;91(3):303–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Czuczman MS, et al. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704.PubMedCrossRefGoogle Scholar
  39. 39.
    Taylor PC, et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis. 2011;70(12):2119–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Ivyanskiy I, Sand C, Francis ST. Omalizumab for chronic urticaria: a case series and overview of the literature. Case Rep Dermatol. 2012;4(1):19–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Concannon C, et al. Nanoemulsion encapsulation and in vitro SLN models of delivery for cytotoxic methotrexate. Curr Drug Discov Technol. 2010;7(2):123–36.PubMedGoogle Scholar
  42. 42.
    Corem-Salkmon E, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine. 2011;6:1595–602.PubMedGoogle Scholar
  43. 43.
    Lin YK, et al. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine. 2010;5:117–28.PubMedGoogle Scholar
  44. 44.
    Di Lorenzo G, et al. Leukotriene receptor antagonists in monotherapy or in combination with antihistamines in the treatment of chronic urticaria: a systematic review. J Asthma Allergy. 2008;2:9–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of Dapsone. AAPS PharmSciTech. 2008;9(1):47–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Noda S, Asano Y, Sato S. Long-term complete resolution of severe chronic idiopathic urticaria after dapsone treatment. J Dermatol. 2012;39(5):496–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Grattan CE, et al. Plasmapheresis for severe, unremitting, chronic urticaria. Lancet. 1992;339(8801):1078–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Jiang X, et al. A case report of double-filtration plasmapheresis for the resolution of refractory chronic urticaria. Ther Apher Dial. 2008;12(6):505–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Herrmann IK, et al. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol Dial Transplant. 2011;26(9):2948–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Li FQ, et al. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method. Arch Pharm Res. 2010;33(12):1967–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol. 2012;132(2):268–73.PubMedCrossRefGoogle Scholar
  52. 52.
    Berson JF, et al. A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J Biol Chem. 2000;275(16):12281–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Department of DermatologyUNC Chapel HillChapel HillUSA
  2. 2.Department of DermatologyUniversity of Maryland Medical CenterBaltimoreUSA

Personalised recommendations