Advertisement

Hypothesis Testing Theory

  • Ron C. Mittelhammer
Chapter

Abstract

A primary goal of scientific research often concerns the verification or refutation of assertions, conjectures, currently accepted laws, or descriptions relating to a given economic, sociological, psychological, physical, or biological process or population. Statistical hypothesis testing concerns the use of probability samples of observations from processes or populations of interest, together with probability and mathematical statistics principles, to judge the validity of stated assertions, conjectures, laws, or descriptions in such a way that the probability of falsely rejecting a correct hypothesis can be controlled, while the probability of rejecting false hypotheses is made as large as possible. The precise nature of the types of errors that can be made, how the probabilities of such errors can be controlled, and how one designs a test so that the probability of rejecting false hypotheses is as large as possible is the subject of this chapter.

Keywords

Power Function Statistical Hypothesis Rejection Region Unbiased Test Asymptotic Normal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ron C. Mittelhammer
    • 1
  1. 1.School of Economic SciencesWashington State UniversityPullmanUSA

Personalised recommendations