Carbon Nanotube Assemblies for Transparent Conducting Electrodes

  • Ilia N. Ivanov
  • Matthew P. Garrett
  • Rosario A. Gerhardt
Part of the Nanostructure Science and Technology book series (NST)


The goal of this chapter is to introduce readers to the fundamental and practical aspects of nanotube assemblies made into transparent conducting networks and discuss some practical aspects of their characterization. Transparent conducting coatings (TCC) are an essential part of electro-optical devices, from photovoltaics and light emitting devices to electromagnetic shielding and electrochromic widows. The market for organic materials (including nanomaterials and polymers) based TCCs is expected to show a growth rate of 56.9% to reach nearly $20.3 billion in 2015, while the market for traditional inorganic transparent electronics will experience growth with rates of 6.7% to nearly $103 billion in 2015. Emerging flexible electronic applications have brought additional requirements of flexibility and low cost for TCC. However, the price of indium (the major component in indium tin oxide TCC) continues to increase. On the other hand, the price of nanomaterials has continued to decrease due to development of high volume, quality production processes. Additional benefits come from the low cost, nonvacuum deposition of nanomaterials based TCC, compared to traditional coatings requiring energy intensive vacuum deposition. Among the materials actively researched as alternative TCC are nanoparticles, nanowires, and nanotubes with high aspect ratio as well as their composites. The figure of merit (FOM) can be used to compare TCCs made from dissimilar materials and with different transmittance and conductivity values. In the first part of this manuscript, we will discuss the seven FOM parameters that have been proposed, including one specifically intended for flexible applications. The approach for how to measure TCE electrical properties, including frequency dependence, will also be discussed. We will relate the macroscale electrical characteristics of TCCs to the nanoscale parameters of conducting networks. The fundamental aspects of nanomaterial assemblies in conducting networks will also be addressed. We will review recent literature on TCCs composed of carbon nanotubes of different types in terms of the FOM.


Contact Resistance Percolation Threshold Sheet Resistance Optical Conductivity Free Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge financial support by the Solar Energy Technologies Program of the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy.


  1. 1.
    US Geological Survey, Mineral commodity summaries 2011 (US Geological Survey, Reston, VA, 2011), p. 198Google Scholar
  2. 2.
    C.A. DiFrancesco, M.W. George, Jr.J.F. Carlin et al., ed. by U.S. Department of the Interior (U.S. Geological Survey, Reston, VA, 2010). Indium StatisticsGoogle Scholar
  3. 3.
    L. Hu, D.S. Hecht, G. Gruner, Nano Lett. 4(12), 2513 (2004)CrossRefGoogle Scholar
  4. 4.
    B. Ruzicka, L. Degiorgi, R. Gaal et al., Phys. Rev. B 61(4), R2468 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Pekker, K. Kamaras, J. Appl. Phys. 108(5), 054318 (2010)CrossRefGoogle Scholar
  6. 6.
    D.S. Hecht, A.M. Heintz, R. Lee et al., Nanotechnology 22(16), 5 (2011)CrossRefGoogle Scholar
  7. 7.
    J.A. Fagan, M.L. Becker, J. Chun et al., Adv. Mater. 20(9), 1609 (2008)CrossRefGoogle Scholar
  8. 8.
    D.A. Heller, R.M. Mayrhofer, S. Baik et al., J. Am. Chem. Soc. 126(44), 14567 (2004)CrossRefGoogle Scholar
  9. 9.
    C.A. Dyke, M.P. Stewart, J.M. Tour, J. Am. Chem. Soc. 127(12), 4497 (2005)CrossRefGoogle Scholar
  10. 10.
    S.M. Tabakman, K. Welsher, G. Hong et al., J. Phys. Chem. C 114(46), 19569 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Simien, J.A. Fagan, W. Luo et al., ACS Nano 2(9), 1879 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Tanaka, H. Jin, Y. Miyata et al., Nano Lett. 9(4), 1497 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Feng, Y. Miyata, K. Matsuishi et al., J. Phys. Chem. C 115(5), 1752 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Rahy, P. Bajaj, I.H. Musselman et al., Appl. Surf. Sci. 255(15), 7084 (2009)CrossRefGoogle Scholar
  15. 15.
    J.L. Blackburn, T.M. Barnes, M.C. Beard et al., ACS Nano 2(6), 1266 (2008)CrossRefGoogle Scholar
  16. 16.
    T.P. Tyler, R.E. Brock, H.J. Karmel et al., Adv. Energy Mater. 1(5), 701 (2011)CrossRefGoogle Scholar
  17. 17.
    A.A. Green, M.C. Hersam, Nano Lett. 8(5), 1417 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Miyata, K. Yanagi, Y. Maniwa et al., J. Phys. Chem. C 112(10), 3591 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Li, Appl. Phys. Lett. 91(5), 053115 (2007)CrossRefGoogle Scholar
  20. 20.
    A.A. Green, M.C. Hersam, Nat. Nano. 4(1), 64 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.-A. Li, N.-H. Tai, S.-K. Chen et al., ACS Nano. 5(8), 6500 (2011)Google Scholar
  22. 22.
    M. Jung de Andrade, D.L. Márcio, V. Skákalová et al., Physica Status Solidi Rapid Res. Lett. 1(5), 178 (2007)Google Scholar
  23. 23.
    M. Kaempgen, G.S. Duesberg, S. Roth, Appl. Surf. Sci. 252(2), 425 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Castro, N. Al-Dahoudi, P. Oliveira et al., J. Nanopart. Res. 11(4), 801 (2009)CrossRefGoogle Scholar
  25. 25.
    W.-Y. Ko, J.-W. Su, C.-H. Guo et al., Thin Solid Films 519(22), 7717 (2011)CrossRefGoogle Scholar
  26. 26.
    K.K. Kim, J.J. Bae, H.K. Park et al., J. Am. Chem. Soc. 130(38), 12757 (2008)CrossRefGoogle Scholar
  27. 27.
    S.M. Kim, K.K. Kim, Y.W. Jo et al., ACS Nano 5(2), 1236 (2011)CrossRefGoogle Scholar
  28. 28.
    S.B. Yang, B.-S. Kong, J. Geng et al., J. Phys. Chem. C 113(31), 13658 (2009)CrossRefGoogle Scholar
  29. 29.
    M.P. Garrett, I.N. Ivanov, R.A. Gerhardt et al., Appl. Phys. Lett. 97(16), 163105 (2010)CrossRefGoogle Scholar
  30. 30.
    M.P. Garrett, Ph.D. Dissertation, University of Tennessee, Knoxville, 2009Google Scholar
  31. 31.
    R. Baetens, B.P. Jelle, A. Gustavsen, Solar Energy Mater. Solar Cells 94(2), 87 (2010)CrossRefGoogle Scholar
  32. 32.
    ASTM International, 2008Google Scholar
  33. 33.
    C.G. Granqvist, Solar Energy Mater. Solar Cells 91(17), 1529 (2007)CrossRefGoogle Scholar
  34. 34.
    T.Y. Crowell, The Science of Color (Optical Society of America, New York, 1953)Google Scholar
  35. 35.
    G. Haacke, Annu. Rev. Mater. Sci. 7(1), 73 (1977)CrossRefGoogle Scholar
  36. 36.
    G. Haacke, J. Appl. Phys. 47(9), 4086 (1976)CrossRefGoogle Scholar
  37. 37.
    R.G. Gordon, MRS Bull. 25, 52 (2000)CrossRefGoogle Scholar
  38. 38.
    R.E. Glover, M. Tinkham, Phys. Rev. 108(2), 243 (1957)CrossRefGoogle Scholar
  39. 39.
    B.S. Shim, J. Zhu, E. Jan et al., ACS Nano 4(7), 3725 (2010)CrossRefGoogle Scholar
  40. 40.
    L.B. Valdes, Proc. IRE 42(2), 420 (1954)CrossRefGoogle Scholar
  41. 41.
    A. Uhlir, Bell Syst. Techn. J. 105 (1955)Google Scholar
  42. 42.
    F.M. Smits, Bell Syst. Techn. J. 710 (1958)Google Scholar
  43. 43.
    V.S.K.G. Kelekanjeri, R.A. Gerhardt, Meas. Sci. Technol. 19(2), 025701 (2008)CrossRefGoogle Scholar
  44. 44.
    R. Holm, Electric Contacts: Theory and Application, 4th edn. (Springer, New York, 1967)Google Scholar
  45. 45.
    J. Albers, H.L. Berkowitz, J. Electrochem. Soc. Solid State Sci. Technol. 131(2), 392 (1984)Google Scholar
  46. 46.
    R.A. Gerhardt, in Encyclopedia of Condensed Matter Physics, ed. by G. Bassani, G.L. Liedl, P. Wyder (Elsevier Press, Oxford, 2005), p. 350CrossRefGoogle Scholar
  47. 47.
    I.M. Novosel’skii, N.N. Gudina, Y.I. Fetistov, Soviet Elektrokhimiya 8, 565 (1972)Google Scholar
  48. 48.
    A.S. Bondarenko, G.A. Ragoisha, EIS Spectrum Analyser,
  49. 49.
    J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)Google Scholar
  50. 50.
    H.S. Park, J.-S. Kim, B.G. Choi et al., Carbon 48(5), 1325 (2010)CrossRefGoogle Scholar
  51. 51.
    D.S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23(13), 1482 (2010)CrossRefGoogle Scholar
  52. 52.
    D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J. Am. Chem. Soc. 125(11), 3370 (2003)CrossRefGoogle Scholar
  53. 53.
    M.R.S. Castro, H.K. Schmidt, Mater. Chem. Phys. 111(2–3), 317 (2008)CrossRefGoogle Scholar
  54. 54.
    R. Gerhardt, A.S. Nowick, J. Am. Ceram. Soc. 69(9), 641 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ilia N. Ivanov
    • 1
  • Matthew P. Garrett
    • 1
    • 2
  • Rosario A. Gerhardt
    • 3
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of PhysicsUniversity of TennesseeKnoxvilleUSA
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations