Nanoscale Photovoltaics and the Terawatt Challenge

  • Stephen M. Goodnick
  • Nikolai Faleev
  • Christiana Honsberg
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Achieving a sustainable energy system providing terawatts (TWs) of electricity is one of the defining challenges of the coming decades. Photovoltaic technology provides the most likely path to realizing TW scale conversion of solar energy in the future and has been on a nearly 40% growth curve over the past two decades. In order to maintain this rapid level of growth, innovations in cell design and conversion efficiency are needed that are compatible with existing technology and can lead to improved performance and lower cost. Nanotechnology offers a number of advantages to realizing such innovation, by providing new materials and the implementation of advanced concepts that circumvent the current physical limits on efficiency. This chapter reviews several of the promising applications of nanotechnology to photovoltaic technologies and their prospects for the future.

References

  1. 1.
    R.E. Smalley, Future global energy prosperity: The terawatt challenge. MRS Bull. 30, 412–417 (2005)CrossRefGoogle Scholar
  2. 2.
    N.A. Lewis, Powering the Planet. DOE Program Review (2005)Google Scholar
  3. 3.
    W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRefGoogle Scholar
  4. 4.
    Solar Junction tips 43.5% efficient CPV cell, preps 250 MW capacity ramp. Photovoltaics World, Photovoltaics-CPV, Issue 2, March 2011Google Scholar
  5. 5.
    R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)CrossRefGoogle Scholar
  6. 6.
    K.W.J. Barnham, G. Duggan, A new approach to multi bandgap solar cells. J. Appl. Phys. 67, 3490 (1990)CrossRefGoogle Scholar
  7. 7.
    S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405 (1993)CrossRefGoogle Scholar
  8. 8.
    M.A. Green, Third Generation Photovoltaics: Advanced Energy Conversion (Springer, Berlin, 2003)Google Scholar
  9. 9.
    S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Schaller, V. Klimov, High efficiency carrier multiplication in pbse nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)CrossRefGoogle Scholar
  11. 11.
    H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, N. Karam, III-V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Luque, A. Martí, Phys. Rev. Lett. 78, 5014 (1997)CrossRefGoogle Scholar
  13. 13.
    R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys 53, 3813 (1982)CrossRefGoogle Scholar
  14. 14.
    P. Würfel, Solar energy conversion with hot electrons from impact ionization. Sol. Energy Mater. Sol. Cells 46, 43 (1997)CrossRefGoogle Scholar
  15. 15.
    P. Würfel, A.S. Brown, T.E. Humphrey, M.A. Green, Particle conservation in the hot-carrier solar cell. Prog. Photovolt. Res. Appl. 13, 277 (2005)CrossRefGoogle Scholar
  16. 16.
    A.Y. Cho, J.R. Arthur, Molecular beam epitaxy. Prog. Solid State Chem. 10, 157–191 (1975)CrossRefGoogle Scholar
  17. 17.
    W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387 (2006)CrossRefGoogle Scholar
  18. 18.
    L. Samuelson, Self-forming nanoscale devices. Mater. Today 6, 22–31 (2003)CrossRefGoogle Scholar
  19. 19.
    M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)CrossRefGoogle Scholar
  20. 20.
    M.T. Björk, B.J. Ohlsson, C. Thelander, A.I. Persson, K. Deppert, L.R. Wallenberg, L. Samuelson, Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81, 4458–4460 (2002)CrossRefGoogle Scholar
  21. 21.
    C. Thelander, T. Martensson, M.T. Björk, B.J. Ohlsson, M.W. Larsson, L.R. Wallenberg, L. Samuelson, Single-electron transistors in heterostructure nanowires. Appl. Phys. Lett. 83, 2052–2054 (2003)CrossRefGoogle Scholar
  22. 22.
    A. Fuhrer, C. Fasth, L. Samuelson, Single electron pumping in InAs nanowire double quantum dots. Appl. Phys. Lett. 91 (2007). doi:10.1063/1.2767197
  23. 23.
    A. Fuhrer, L.E. Froberg, J.N. Pedersen, M.W. Larsson, A. Wacker, M.E. Pistol, L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 7, 243–246 (2007)CrossRefGoogle Scholar
  24. 24.
    M.T. Björk, A. Fuhrer, A.E. Hansen, M.W. Larsson, L.E. Jensen, L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots. Phys. Rev. B 72, 201307 (2005)CrossRefGoogle Scholar
  25. 25.
    A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)CrossRefGoogle Scholar
  26. 26.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, UK, 1999)Google Scholar
  27. 27.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRefGoogle Scholar
  28. 28.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996)Google Scholar
  29. 29.
    T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2003)CrossRefGoogle Scholar
  30. 30.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003)CrossRefGoogle Scholar
  31. 31.
    P.L. McEuen, M.S. Fuhrer, P. Hongkun, Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)CrossRefGoogle Scholar
  32. 32.
    S. Kolodinski, J.H. Werner, T. Wittchen, H.J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63(17), 2405–2407 (1993)CrossRefGoogle Scholar
  33. 33.
    R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92(18), 186601 (2004)CrossRefGoogle Scholar
  34. 34.
    R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5(5), 865–871 (2005)CrossRefGoogle Scholar
  35. 35.
    A.J. Nozick, Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893 (2005)CrossRefGoogle Scholar
  36. 36.
    A. Shabaev, A.L. Efros, A.J. Nozik, Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 8 (2006)CrossRefGoogle Scholar
  37. 37.
    R.D. Schaller, J.M. Pietryga, V.I. Klimov, Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 7(11), 3469–76 (2007)CrossRefGoogle Scholar
  38. 38.
    J.E. Murphy, M.C. Beard, A.G. Norman, S. Phillip, J.C. Johnson, S.P. Ahrenkiel, O.I. Micic, P. Yu, R.J. Ellingson, A.J. Nozik, PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128(10), 3241–3247 (2006)CrossRefGoogle Scholar
  39. 39.
    J.H. Werner, S. Kolodinski, H.J. Queisser, Novel optimization principles and efficiency limits for semiconductor solar cells. Phys. Rev. Lett. 72(24), 3851–4 (1994)CrossRefGoogle Scholar
  40. 40.
    M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7(8), 2506–2512 (2007)CrossRefGoogle Scholar
  41. 41.
    A. de Vos, B. Desoete, On the ideal performance of solar cells with larger-than-unity quantum efficiency. Sol. Energy Mater. Sol. Cells 51(3), 413–424 (1998)CrossRefGoogle Scholar
  42. 42.
    T.-Y. Kim, N.-M. Park, K.-H. Kim, Y.-W. Ok, T.-Y. Seong, C.-J. Choi, G.Y. Sung, Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Mater. Res. Soc. Symp. Proc. 817, L4.3 (2004)CrossRefGoogle Scholar
  43. 43.
    Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94(26), 263118 (2009)CrossRefGoogle Scholar
  44. 44.
    Y.M. Song, S.Y. Bae, J.S. Yu, Y.T. Lee, Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer. Opt. Lett. 34(11), 1702–4 (2009)CrossRefGoogle Scholar
  45. 45.
    S.A. Boden, D.M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces. Appl. Phys. Lett. 93(13), 133108 (2008)CrossRefGoogle Scholar
  46. 46.
    N. Wang, Y. Cai, R.Q. Zhang, Growth of nanowires. Mater. Sci. Eng. R Rep. 60(1), 1–51 (2008)CrossRefGoogle Scholar
  47. 47.
    M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, H.A. Atwater, Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8(2), 710–14 (2008)CrossRefGoogle Scholar
  48. 48.
    Sean’s thesisGoogle Scholar
  49. 49.
    T. Ogi, K. Okuyama, L.B. Modesto-Lopez, F. Iskandar, Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloids Surf. A Physicochem. Eng. Asp. 297(1), 71–78 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Luque, A. Martí, The intermediate band solar cell: Progress toward the realization of an attractive concept. Adv. Mater. 22, 160–174 (2010)CrossRefGoogle Scholar
  51. 51.
    Y. Yao, W.O. Charles, T. Tsai, G. Wysocki, J. Chen, C.F. Gmachl, Broadband quantum cascade laser gain medium based on a “continuum-to-bound” active region design. Appl. Phys. Lett. 96(21), 211106 (2010)CrossRefGoogle Scholar
  52. 52.
    P. Bhattacharya, A.D. Stiff-Roberts, S. Krishna, S. Kennerly, Quantum dot infrared detectors and sources. Int. J. High Speed Electron. Syst. 12(4), 969–94 (2002)CrossRefGoogle Scholar
  53. 53.
    H.F. MacMillan, H.C. Hamaker, N.R. Kaminar, M.S. Kuryla, M.L. Ristow, D.D. Liu, G.F. Virshup, J.M. Gee, 28% Efficient GaAs concentrator solar cells. IEEE Photovoltaic Specialists Conference, pp. 462–8 (1988)Google Scholar
  54. 54.
    C.G. Bailey, D.V. Forbes, R.P. Raffaelle, S.M. Hubbard, Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98, 163105 (2011)CrossRefGoogle Scholar
  55. 55.
    S. Sauvage, P. Boucaud, F.H. Julien, J.-M. Gérard, V. Thierry-Mieg, Intraband absorption in n-doped InAs/GaAs quantum dots. Appl. Phys. Lett. 71, 2785 (1997)CrossRefGoogle Scholar
  56. 56.
    A. Martí, E. Antolín, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, A. Luque, Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97, 247701 (2006)CrossRefGoogle Scholar
  57. 57.
    J. Nelson, J. Barnes, N. Ekins-Daukes, B. Kluftinger, E. Tsui, K. Barnham, C. Tom Foxon, T. Cheng, J. Roberts, Observation of suppressed radiative recombination in single quantum well p- i- n photodiodes. J. Appl. Phys. 82, 6240 (1997)CrossRefGoogle Scholar
  58. 58.
    K.-Y. Ban, S.P. Bremner, G. Liu, S.N. Dahal, P.C. Dippo, A.G. Norman, C.B. Honsberg, Use of a GaAsSb buffer layer for the formation of small, uniform, and dense InAs quantum dots. Appl. Phys. Lett. 96, 183101 (2010)CrossRefGoogle Scholar
  59. 59.
    K.-Y. Ban, S.P. Bremner, G. Liu, S.N. Dahal, P.C. Dippo, A.G. Norman, C.B. Honsberg, Controllability of the subband occupation of InAs quantum dots on a delta-doped GaAsSb barrier. J. Appl. Phys. 109, 014312 (2011)CrossRefGoogle Scholar
  60. 60.
    R.T. Ross, A.J. Nozik, Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982)CrossRefGoogle Scholar
  61. 61.
    P.T. Landsberg, G. Tonge, Thermodynamic energy conversion efficiencies. J. Appl. Phys. 5(1), R1 (1980)CrossRefGoogle Scholar
  62. 62.
    P. Würfel, Solar energy conversion with hot electrons from impact ionization. Sol. Energy Mater. Sol. Cells 46, 43–52 (1997)CrossRefGoogle Scholar
  63. 63.
    P. Würfel, A.S. Brown, T.E. Humphrey, M.A. Green, Particle conservation in the hot-carrier solar cell. Prog. Photovolt. Res. Appl. 13, 277 (2005)CrossRefGoogle Scholar
  64. 64.
    G. Conibeer, M.A. Green, R. Corkish, Y. Cho, E. Chob, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, K. Lind, Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511–512, 654 (2006)CrossRefGoogle Scholar
  65. 65.
    W.S. Pelouch, R.J. Ellingson, P.E. Powers, C.L. Tang, D.M. Szmyd, A.J. Nozik, Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Phys. Rev. B 45, 1450–1453 (1992)CrossRefGoogle Scholar
  66. 66.
    K.S. Tsen, K.R. Wald, T. Ruf, P.Y. Yu, H. Morkoc, Electron optical phonon interactions in ultrathin GaAs AlAs multiple quantum well structures. Phys. Rev. Lett. 67, 2557–2560 (1991)CrossRefGoogle Scholar
  67. 67.
    K.T. Tsen, R.P. Joshi, D.K. Ferry, A. Botcharev, B. Sverdlov, A. Salvador, H. Morkoc, Non-equlibrium electron distributions and phonon dynamics in wurtzite GaN. Appl. Phys. Lett. 68, 2990–2992 (1996)CrossRefGoogle Scholar
  68. 68.
    K.T. Tsen, J.G. Kiang, D.K. Ferry, H. Morkoc, Subpicosecond time-resolved Raman studies of LO phonons in GaN: Dependence on photoexcited carrier density. Appl. Phys. Lett. 89, 112111 (2006)CrossRefGoogle Scholar
  69. 69.
    K.T. Tsen, J.G. Kiang, D.K. Ferry, H. Lu, W.J. Schaff, H.-W. Lin, S. Gwo, Direct measurements of the lifetimes of longitudinal optical phonon modes and their dynamics in InN. Appl. Phys. Lett. 90, 152107-1-3 (2007)Google Scholar
  70. 70.
    S.M. Goodnick, P. Lugli, Hot carrier relaxation in quasi-2D systems, in Hot Carriers in Semiconductor Microstructures: Physics and Applications, ed. by J. Shah (Academic, New York, 1992), pp. 191–234Google Scholar
  71. 71.
    M. Dür, S.M. Goodnick, P. Lugli, Monte Carlo simulation of intersubband relaxation in wide, uniformly doped GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B54, 17794 (1996)Google Scholar
  72. 72.
    G. Conibeer, R. Patterson, L. Huang, J.-F. Guillemoles, D. König, S. Shrestha, M.A. Green, Modelling of hot carrier solar cell absorbers. Sol. Energy Mater. Sol. Cells 94, 1516–1521 (2010)CrossRefGoogle Scholar
  73. 73.
    S.M. Goodnick, C. Honsberg, Modeling carrier relaxation in hot carrier solar cells. Proc. SPIE. 8256, 82560W (2012). doi:10.1117/12.910858
  74. 74.
    C.B. Honsberg, J. Lee, A. Bailey, S. Dahal, Hybrid advanced concept solar cells. Proceedings of the 37th IEEE Photovoltaics Specialists Conference, Seattle, WA, 2011Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stephen M. Goodnick
    • 1
  • Nikolai Faleev
    • 1
  • Christiana Honsberg
    • 1
  1. 1.School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeUSA

Personalised recommendations