Skip to main content

Homeobox Genes as Potential Candidates for Crop Improvement Under Abiotic Stress

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Understanding the molecular basis of plant responses to the major abiotic stresses such as drought and salinity is very important for the biotechnological application of stress adaptation for crop improvement. In this context, thousands of stress-responsive genes have been identified and a few of them have been functionally characterized. Some of them have been proposed as suitable targets for genetic engineering in order to impart stress tolerance in plants. Amidst numerous genes analyzed, transcription factors are considered to be very good targets for studying the molecular mechanisms of abiotic stress response as they singularly or in conjunction regulate the expression of many downstream target genes. Among the various transcription factor encoding genes, homeobox genes, which are well known to be involved in diverse aspects of development, have also recently been implicated in abiotic stress responses. Through various overexpression and mutant studies, the versatility of homeobox genes in plants has been revealed. There are evidences where these genes have been found to confer stress tolerance in plants. This review highlights the importance of homeobox genes in abiotic stress responses and their potential for engineering stress tolerance for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agalou A, Purwantomo S, Overnas E et al (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87–103

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Dong CH, Yan WU et al (1995) Ectopic expression of the Arabidopsis transcriptional activator ATHB-1 alters leaf cell fate in tobacco. Plant Cell 7:1773–1785

    PubMed  CAS  Google Scholar 

  • Arce AL, Raineri J, Capella M, Cabello JV, Chan RL (2011) Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC Plant Biol 11:42

    Article  PubMed  CAS  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1997) Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Natl Acad Sci USA 94:13749–13753

    Article  PubMed  CAS  Google Scholar 

  • Byrne ME, Groover AT, Fontana JR, Martienssen RA (2003) Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development 130:3941–3950

    Article  PubMed  CAS  Google Scholar 

  • Chan RL, Gago GM, Palena CM, Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta 1442:1–19

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132:1391–1404

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Phillips J, Meijer AH, Salamini F, Bartels D (2002) Characterization of five novel ­dehydration responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49:601–610

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Phillips J, Bräutigam A et al (2006) A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and ­physiological responses. Plant Mol Biol 61:469–489

    Article  PubMed  CAS  Google Scholar 

  • Deyhle F, Sarkar AK, Tucker EJ, Laux T (2007) WUSCHEL regulates cell differentiation during anther development. Dev Biol 302:154–159

    Article  PubMed  CAS  Google Scholar 

  • Dezar CA, Gago GM, Gonzalez DH, Chan RL (2005) Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis ­thaliana plants. Transgenic Res 14:429–440

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L, encode ­transcription activators that function in drought, high-salt and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Frank W, Phillips J, Salamini F, Bartels D (1998) Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain leucine ­zipper proteins. Plant J 15:413–421

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth and gene expression in Arabidopsis. Plant Cell 19:485–494

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K et al (2004) A dehydration induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R et al (2005) AREB1 is a transcription activator of novel ­ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525. http://dx.doi.org/10.1007/s10265-011-0412-3

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y et al (2006) ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Gago GM, Almoguera C, Jordano J, Gonzalez DH, Chan RL (2002) Hahb-4, a homeobox-leucine zipper gene potentially involved in abscisic acid-dependent responses to water stress in sunflower. Plant Cell Environ 25:633–640

    Article  CAS  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis)harmony molds plant health and disease. Science 324:750–752

    Article  PubMed  CAS  Google Scholar 

  • Hadiarto T, Tran LS (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  PubMed  CAS  Google Scholar 

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: Versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  PubMed  CAS  Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? Bioessays 26:395–404

    Article  PubMed  CAS  Google Scholar 

  • Henriksson E, Olsson A, Johannesson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis expression patterns and phylogenetic relationships. Plant Physiol 139:509–518

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hjellstrom M, Olsson A, Engstrom P, Soderman E (2003) Constitutive expression of the water deficit-inducible homeobox gene ATHB7 in transgenic Arabidopsis causes a suppression of stem elongation growth. Plant Cell Environ 26:1127–1136

    Article  Google Scholar 

  • Jain M, Khurana JP (2008) Small RNA regulation of rice homeobox genes. Plant Signal Behav 3:1024–1025

    PubMed  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2008) Genome-wide identification, classification, evolutionary expansion and expression analyses of homeobox genes in rice. FEBS J 275:2845–2861

    Article  PubMed  CAS  Google Scholar 

  • Johannesson H, Wang Y, Hanson J, Engstrom P (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol 51:719–729

    Article  PubMed  CAS  Google Scholar 

  • Kagaya Y, Hobo T, Murata M, Ban A, Hattori T (2002) Abscisic acid induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 14:3177–3189

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Murata M, Minami H et al (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Chun JY (1998) A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatment. Plant Mol Biol 37:377–384

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Song F, Zheng Z (2005) Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J Exp Bot 56:2673–2682

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158

    Article  PubMed  CAS  Google Scholar 

  • Manavella PA, Arce AL, Dezar CA (2006) Cross-talk between ethylene and drought signaling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant J 48:125–137

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee K, Brocchieri L, Burglin TR (2009) A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 26:2775–2794

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Katsumata H, Abe M et al (2006) Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol 141:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Ni Y, Wang X, Li D, Wu Y, Xu W, Li X (2008) Novel cotton homeobox gene and its expression profiling in root development and in response to stresses and phytohormones. Acta Biochim Biophy Sin 40:78–84

    Article  CAS  Google Scholar 

  • Olsson A, Engstrom P, Soderman E (2004) The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol 55:663–677

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic and distinct roles in Arabidopsis development. Plant Cell 17:61–76

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J et al (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L et al (1995) The BELL1 gene encodes a homeodomain ­protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Carabelli M, Sassi M et al (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev 19:2811–2815

    Article  PubMed  CAS  Google Scholar 

  • Shin D, Koo YD, Lee J et al (2004) Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323:534–540

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene, function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Smith HM, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA- binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Soderman E, Mattsson J, Engstrom P (1996) The Arabidopsis homeobox gene ATHB-7 is induced by water deficit and by abscisic acid. Plant J 10:375–381

    Article  PubMed  CAS  Google Scholar 

  • Soderman E, Hjellstrom M, Fahleson J, Engstrom P (1999) The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol 40:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66:844–851

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121:2723–2735

    PubMed  CAS  Google Scholar 

  • Tan QK, Irish VF (2006) The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development. Plant Physiol 140:1095–1108

    Article  PubMed  CAS  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2006) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    Article  Google Scholar 

  • Tron AE, Bertoncini CW, Chan RL, Gonzalez DH (2002) Redox regulation of plant homeodomain transcription factors. J Biol Chem 277:34800–34807

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–1163725

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:1–7

    Article  Google Scholar 

  • van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10:248.1–248.9

    Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Henriksson E, Soderman E, Henriksson KN, Sundberg E, Engstrom P (2003) The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol 264:228–239

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yu SW, Zhang LD, Zuo KJ, Tang DQ, Sun XF, Tang KX (2005) Brassica napus L. homeodomain leucine zipper gene BnHB6 responds to abiotic and biotic stresses. J Integr Plant Biol 47:1236–1248

    Article  CAS  Google Scholar 

  • Yu H, Chen X, Hong YY et al (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ (2011) Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. J Integr Plant Biol 53:493–506

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Shi H, Lee BH et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A 101:9873–9878

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported financially by the Department of Science and Technology (grant file number SR/S0/PS/07/2011), Government of India, New Delhi and core grant from NIPGR. AB acknowledges the award of research fellowship from the Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharjee, A., Jain, M. (2013). Homeobox Genes as Potential Candidates for Crop Improvement Under Abiotic Stress. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_7

Download citation

Publish with us

Policies and ethics