Complexity in Movement Disorders: A Systems Approach to Intervention



Too often overlooked, normal motor function is one of the most critical components of the human existence. The ability to move rests at the core of quality of life, due to the freedom that independent mobility offers. Despite its central role in everyday life, motor function is sometimes viewed as independent from and subsidiary to cognitive function (see [1]). As a result, there has been relatively less attention paid to the deficits in motor function that arise due to disease. However, a growing body of evidence points to movement disorders as being a central issue in a variety of neurological diseases and disorders, even ones that were considered as exclusively “mental” disorders in the past. In this chapter, we will explore a systems approach to motor dysfunction. The chapter is laid out in the following way. First, the chapter will briefly review the ubiquity of similar patterns of behaviour in physics and biology as an overarching framework. The ubiquity of findings across a wide range of complex systems forms the central theme of this chapter. I will also highlight similarities across findings in a broad range of areas of study that are often considered to be disparate fields of science.


Down Syndrome Movement Disorder Task Demand Stochastic Resonance Motor Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by grants from the National Institutes on Aging (R21AG035158 and 1R21AG039818).


  1. 1.
    Rosenbaum DA. The Cinderella of psychology: the neglect of motor control in the science of mental life and behavior. Am Psychol. 2005;60(4):308–17.PubMedCrossRefGoogle Scholar
  2. 2.
    West BJ. Where medicine went wrong: rediscovering the path to complexity. Hackensack: Wold Scientific; 2006.Google Scholar
  3. 3.
    Guastello SJ. Managing emergent phenomena: nonlinear dynamics in work organizations. Mahwah, NJ: Lawrence Erlbaum; 2002.Google Scholar
  4. 4.
    Bak P. How nature works: the science of self-organized criticality. New York: Copernicus; 1996.Google Scholar
  5. 5.
    Bar-Yam Y. Dynamics of complex systems. New York: Westview; 1997.Google Scholar
  6. 6.
    Gilden D, Thornton T, Mallon M. 1/f noise in human cognition. Science. 1995;267(5205):1837–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Van Orden GC, Holden JG, Turvey MT. Human cognition and 1/f scaling. J Exp Psychol Gen. 2005;134(1):117–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol. 1996;80(5):1448–57.PubMedGoogle Scholar
  9. 9.
    Jordan K, Challis JH, Newell KM. Long range correlations in the stride interval of running. Gait Posture. 2006;24(1):120–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Hong SL, James EG, Newell KM. Age-related complexity and coupling of children’s sitting posture. Dev Psychobiol. 2008;50(5):502–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Duarte M, Zatsiorsky VM. On the fractal properties of natural human standing. Neurosci Lett. 2000;283(3):173–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Blesic S, Stratimirovic D, Milosevic S, Maric J, Kostic V, Ljubisavljevic M. Scaling analysis of the effects of load on hand tremor movements in essential tremor. Phys A Stat Mech Appl. 2011;390(10):1741–6.CrossRefGoogle Scholar
  13. 13.
    Aks DJ, Zelinsky GJ, Sprott JC. Memory across eye-movements: 1/f dynamic in visual search. Nonlinear Dynamics Psychol Life Sci. 2002;6(1):1–25.CrossRefGoogle Scholar
  14. 14.
    Nakamura T, Kiyono K, Yoshiuchi K, Nakahara R, Struzik ZR, Yamamoto Y. Universal scaling law in human behavioral organization. Phys Rev Lett. 2007;99(13):138103.PubMedCrossRefGoogle Scholar
  15. 15.
    Roizen NJ, Higgins AM, Antshel KM, Fremont W, Shprintzen R, Kates W. 22q11.2 deletion syndrome: are motor deficits more than expected for IQ level? J Pediatr. 2010;157(4):658–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Piek JP, Pitcher TM, Hay DA. Motor coordination and kinaesthesis in boys with attention deficit–hyperactivity disorder. Dev Med Child Neurol. 1999;41(3):159–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson SE, Morris J, Frith U. The motor deficit in Down’s syndrome children: a problem of timing? J Child Psychol Psychiatry. 1981;22(3):233–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Ming X, Brimacombe M, Wagner GC. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007;29(9):565–70.PubMedCrossRefGoogle Scholar
  19. 19.
    Smith MA, Brandt J, Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature. 2000;403(6769):544–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Berardelli A, Rothwell JC, Day BL, Marsden CD. Movements not involved in posture are abnormal in Parkinson’s disease. Neurosci Lett. 1984;47(1):47–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Manckoundia P, Pfitzenmeyer P, d’Athis P, Mourey F. Impact of cognitive task on the posture of elderly subjects with Alzheimer’s disease compared to healthy elderly subjects. Mov Disord. 2006;21(2):236–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain Cogn. 2009; 71(3):345–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Marvel CL, Schwartz BL, Rosse RB. A quantitative measure of postural sway deficits in schizophrenia. Schizophr Res. 2004;68(2–3):363–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Bolbecker AR, Hong SL, Kent JS, Klaunig MJ, O’Donnell BF, Hetrick WP. Postural control in bipolar disorder: increased sway area and decreased dynamical complexity. PLoS One. 2011;6(5):e19824.PubMedCrossRefGoogle Scholar
  25. 25.
    Bolbecker AR, Hong SL, Kent JS, Forsyth JK, Klaunig MJ, Lazar EK, et al. Paced finger-tapping abnormalities in bipolar disorder indicate timing dysfunction. Bipolar Disord. 2011;13(1):99–110.PubMedCrossRefGoogle Scholar
  26. 26.
    Allen PA, Namazi KH, Patterson MB, Crozier LC, Groth KE. Impact of adult age and Alzheimer’s ­disease on levels of neural noise for letter matching. J Gerontol. 1992;47(5):P344–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Li S-C, Lindenberger U, Sikström S. Aging cognition: from neuromodulation to representation. Trends Cogn Sci. 2001;5(11):479–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267(13):1806–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Pincus SM. Approximate entropy as a measure of system-complexity. Proc Natl Acad Sci USA. 1991;88:2297–301.PubMedCrossRefGoogle Scholar
  30. 30.
    Sosnoff JJ, Newell KM. Age-related loss of adaptability to fast time scales in motor variability. J Gerontol B Psychol Sci Soc Sci. 2008;63(6):P344–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Duarte M, Sternad D. Complexity of human postural control in young and older adults during prolonged standing. Exp Brain Res. 2008;191(3):265–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Hong SL, James EG, Newell KM. Coupling and irregularity in the aging motor system: tremor and movement. Neurosci Lett. 2008;433(2):119–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Hong SL, Bodfish JW, Newell KM. Power-law scaling for macroscopic entropy and microscopic complexity: evidence from human movement and posture. Chaos. 2006;16:013135.PubMedCrossRefGoogle Scholar
  34. 34.
    Newell KM, Vaillancourt DE, Sosnoff JJ. Aging, complexity and motor performance: health and disease states. In: Birren JE, Schaie KW, editors. Handbook of the psychology of aging. Amsterdam: Elsevier; 2006. p. 163–82.CrossRefGoogle Scholar
  35. 35.
    Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging. 2002;23(1):1–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M. The route to diabetes: loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes. 2008;1:3–11.PubMedGoogle Scholar
  37. 37.
    Gottschalk A, Bauer MS, Whybrow PC. Evidence of chaotic mood variation in bipolar disorder. Arch Gen Psychiatry. 1995;52:947–59.PubMedCrossRefGoogle Scholar
  38. 38.
    Lipsitz LA. Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci. 2002;57:B115–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Pincus SM. Greater signal regularity may indicate increased system isolation. Math Biosci. 1994;122(2):161–81.PubMedCrossRefGoogle Scholar
  40. 40.
    Lipsitz LA. Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ. 2004;16:pe16.CrossRefGoogle Scholar
  41. 41.
    Assisi CG, Jirsa VK, Kelso JAS. Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. Phys Rev Lett. 2005;94:4.CrossRefGoogle Scholar
  42. 42.
    Hong SL. The dynamics of structural and functional complexity across the lifespan. Nonlinear Dynamics Psychol Life Sci. 2007;11(2):219–34.PubMedGoogle Scholar
  43. 43.
    Newell KM, Liu Y-T, Mayer-Kress G. A dynamical systems interpretation of epigenetic landscapes for infant motor development. Infant Behav Dev. 2003;26(4):449–72.CrossRefGoogle Scholar
  44. 44.
    Vaillancourt DE, Slifkin AB, Newell KM. Regularity of force tremor in Parkinson’s disease. Clin Neurophysiol. 2001;112(9):1594–603.PubMedCrossRefGoogle Scholar
  45. 45.
    Morrison S, Sosnoff JJ. Age-related changes in the adaptability of neuromuscular output. J Mot Behav. 2009;41(3):274–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos. 1995;5(1):82–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Newell KM. Constraints on the development of coordination. In: Wade MG, Whiting HTA, editors. Motor development in children. Amsterdam: Nijhoff; 1986. p. 341–61.Google Scholar
  48. 48.
    Bernstein NA. The co-ordination and regulation of movements. Oxford: Pergamon; 1967.Google Scholar
  49. 49.
    Kugler PN, Turvey MT. Information, natural laws, and self-assembly of rhythmic movement. Hillsdale, NJ: Erlbaum; 1987.Google Scholar
  50. 50.
    Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge, MA: MIT Press; 1995.Google Scholar
  51. 51.
    Holt KG, Hamill J, Andres RO. The force-driven harmonic oscillator as a model for human locomotion. Hum Mov Sci. 1990;9(1):55–68.CrossRefGoogle Scholar
  52. 52.
    Haken H, Kelso JAS, Bunz H. A theoretical model of phase-transitions in human hand movements. Biol Cybern. 1985;51(5):347–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Zanone PG, Kelso JA. Evolution of behavioral attractors with learning: nonequilibrium phase transitions. J Exp Psychol Hum Percept Perform. 1992;18(2):403–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Zanone PG, Kelso JAS. Coordination dynamics of learning and transfer: collective and component levels. J Exp Psychol Hum Percept Perform. 1997;23(5):1454–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Kugler PN, Kelso JAS, Turvey MT. On the concept of coordinative structures as dissipative structures I. Theoretical lines of convergence. In: Stelmach GE, Requin J, editors. Tutorials in motor behavior. Amsterdam: Elsevier; 1980.Google Scholar
  56. 56.
    Hong SL, Newell KM. Entropy conservation in the control of human action. Nonlinear Dynamics Psychol Life Sci. 2008;12(2):163–90.PubMedGoogle Scholar
  57. 57.
    Hong SL. The entropy conservation principle: applications in ergonomics and human factors. Nonlinear Dynamics Psychol Life Sci. 2010;14(3):291–315.PubMedGoogle Scholar
  58. 58.
    Müller I. A history of thermodynamics: the doctrine of energy and entropy. Berlin: Springer; 2007.Google Scholar
  59. 59.
    Hong SL, Newell KM. Entropy compensation in human motor adaptation. Chaos. 2008;18:013108.PubMedCrossRefGoogle Scholar
  60. 60.
    Hong SL, Newell KM. Motor entropy in response to task demands and environmental information. Chaos. 2008;18:033131.PubMedCrossRefGoogle Scholar
  61. 61.
    Vaillancourt D, Russell D. Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res. 2002;145(3):275–85.PubMedCrossRefGoogle Scholar
  62. 62.
    Hong SL, Beck MR. Uncertainty compensation in human attention: evidence from response times and fixation durations. PLoS One. 2010;5(7):e11461.PubMedCrossRefGoogle Scholar
  63. 63.
    Hong S, Brown A, Newell K. Compensatory properties of visual information in the control of isometric force. Atten Percept Psychophys. 2008;70(2):306–13.CrossRefGoogle Scholar
  64. 64.
    Kelso JAS, Engstrøm DA. The complementary nature. Cambridge, MA: MIT Press; 2006.Google Scholar
  65. 65.
    Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci. 2008;9(9):665–77.PubMedCrossRefGoogle Scholar
  66. 66.
    Gotham AM, Brown RG, Marsden CD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain. 1988;111(2):299–321.PubMedCrossRefGoogle Scholar
  67. 67.
    Lees AJ, Smith E. Cognitive deficits in the early stages of Parkinson’s disease. Brain. 1983;106(2):257–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Starkstein SE, Preziosi TJ, Bolduc PL, Robinson RG. Depression in Parkinson’s disease. J Nerv Ment Dis. 1990;178(1):27–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Factor SA, Feustel PJ, Friedman JH, Comella CL, Goetz CG, Kurlan R, et al. Longitudinal outcome of Parkinson’s disease patients with psychosis. Neurology. 2003;60(11):1756–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Priplata A, Niemi J, Salen M, Harry J, Lipsitz LA, Collins JJ. Noise-enhanced human balance control. Phys Rev Lett. 2002;89(23):238101.PubMedCrossRefGoogle Scholar
  72. 72.
    Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, et al. Noise-enhanced balance control in older adults. Neuroreport. 2002;13(15):1853–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Costa M, Priplata AA, Lipsitz LA, Wu Z, Huang NE, Goldberger AL, et al. Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy. Europhys Lett. 2007;77(6):68008.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolf SL, Blanton S, Baer H, Breshears J, Butler AJ. Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist. 2002;8(6):325–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Charles JR, Wolf SL, Schneider JA, Gordon AM. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol. 2006;48(08):635–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Gordon AM, Charles J, Wolf SL. Methods of constraint-induced movement therapy for children with hemiplegic cerebral palsy: development of a child-friendly intervention for improving upper-extremity function. Arch Phys Med Rehabil. 2005;86(4):837–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Frank E, Swartz HA, Kupfer DJ. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry. 2000;48(6):593–604.PubMedCrossRefGoogle Scholar
  78. 78.
    Frank E, Kupfer DJ, Thase ME, Mallinger AG, Swartz HA, Fagiolini AM, et al. Two-year outcomes for Interpersonal and Social Rhythm Therapy in individuals with bipolar I disorder. Arch Gen Psychiatry. 2005;62(9):996–1004.PubMedCrossRefGoogle Scholar
  79. 79.
    Frank E, Soreca I, Swartz HA, Fagiolini AM, Mallinger AG, Thase ME, et al. The role of Interpersonal and Social Rhythm Therapy in improving occupational functioning in patients with bipolar I disorder. Am J Psychiatry. 2008;165(12):1559–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Ohio UniversityAthensUSA

Personalised recommendations