Skip to main content

Case Study 3: DSIP Architecture Instance for FFT Computation

  • Chapter
  • First Online:
Energy-Efficient Communication Processors

Abstract

This chapter demonstrates the high energy efficiency of the proposed Domain Specific Instruction set Processor (DSIP) architecture template concept (see Chap. 3) on a challenging very high throughput and low latency Fast Fourier Transformation (FFT) processing architecture instance for both Wireless Local Area Network (WLAN) and 60 GHz applications. We implement the hardware and software of this design by utilizing the commercial Target processor design tool suite. The resulting design meets the demanding requirements and is more efficient than comparable state-of-the-art solutions. Section 6.1 motivates this case study and summarizes related work. The flexibility requirements for WLAN and 60 GHz applications are explained in Sect. 6.2. In Sect. 6.3, the algorithm choice and the algorithm properties are explained. The proposed DSIP architecture instance is presented in Sect. 6.4. Software mapping and hardware implementation results are given in Sect. 6.5. Section 6.6 compares the results to Application Specific Integrated Circuit (ASIC) and processor implementations from literature. Finally, Sect. 6.7 concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atak, O., Atalar, A., Arikan, E., Ishebabi, H., Kammler, D., Ascheid, G., Meyr, H., Nicola, M., Masera, G.: Design of application specific processors for the cached FFT algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. III-III (2006). doi:10.1109/ICASSP.2006.1660832

  2. Baas, B.: A generalized cached-FFT algorithm. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 5, pp. 89–92. IEEE (2005). doi:10.1109/ICASSP.2005.1416247

  3. Baykas, T., Sum, C.S., Lan, Z., Wang, J., Rahman, M., Harada, H., Kato, S.: IEEE 802.15.3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011). doi:10.1109/MCOM.2011.5936164

    Article  Google Scholar 

  4. Beheshti, B.: On performance of LTE UE DFT and FFT implementations in flexible software based baseband processors. In: IEEE Long Island Systems, Applications and Technology conference (LISAT), pp. 1–4 (2009). doi:10.1109/LISAT.2009.5031556

  5. van Berkel, C.: Multi-core for mobile phones. In: Design, Automation and Test in Europe (DATE), pp. 1260–1265 (2009)

    Google Scholar 

  6. Bo, Y., Han, J., Zou, Y., Zeng, X.: A low power ASIP for precision configurable FFT processing. In: Asia-Pacific Signal Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1–4 (2012)

    Google Scholar 

  7. Cho, T., Lee, H.: A High-speed low-complexity modified FFT processor for high rate WPAN applications. IEEE Trans Very Large Scale Integr. Syst. 21(1), 187–191 (2013). doi:10.1109/TVLSI.2011.2182068

  8. Cupaiuolo, T., Lo Iacono, D.: A flexible and fast software implementation of the FFT on the BPE platform. In: Design, Automation and Test in Europe (DATE), pp. 1467–1470 (2012). doi:10.1109/DATE.2012.6176598

  9. Fasthuber, R., Li, M., Novo, D., Raghavan, P., Van der Perre, L., Catthoor, F.: Energy-efficient run-time scalable soft-output SSFE MIMO detector architectures. In: Transaction on High-Performance Embedded Architectures and Compilers (HiPEAC), Special Issue SAMOS 2009, vol. 5, no. 3, pp. 1–20 (2011)

    Google Scholar 

  10. Guan, X., Fei, Y., Lin, H.: Hierarchical design of an application-specific instruction set processor for high-throughput and scalable FFT processing. IEEE Trans on Very Large Scale Integr. Syst. 20(3), 551–563 (2012). doi:10.1109/TVLSI.2011.2105512

  11. Heo, K., Cho, S., Lee, J., Sunwoo, M.: Application-specific DSP architecture for fast Fourier transform. In: IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP), pp. 369–377 (2003). doi:10.1109/ASAP.2003.1212860

  12. Huang, S.J., Chen, S.G.: A green FFT processor with 2.5-GS/s for IEEE 802.15.3c (WPANs). In: International Conference on Green Circuits and Systems (ICGCS), pp. 9–13 (2010). doi:10.1109/ICGCS.2010.5543105

  13. Huang, S.J., Chen, S.G.: A high-throughput Radix-16 FFT processor with parallel and normal input/output ordering for IEEE 802.15.3c Systems. IEEE Trans. Circuits Syst. 59(8), 1752–1765 (2012). doi:10.1109/TCSI.2011.2180430

    Google Scholar 

  14. Janhunen, J., Pitkanen, T., Silven, O., Juntti, M.: Fixed- and floating-point processor comparison for MIMO-OFDM detector. IEEE J. Sel. Top. Signal Process. 5(8), 1588–1598 (2011). doi:10.1109/JSTSP.2011.2165830

    Article  Google Scholar 

  15. Jayapala, M., Barat, F., Catthoor, F., Corporaal, H., Deconinck, G.: Clustered loop buffer organization for low energy VLIW embedded processors. IEEE Trans. Comput. 54(6), 672–683 (2005)

    Article  Google Scholar 

  16. Jayasumana, G., Loeffler, C.: Searching for the best Cooley-Tukey FFT algorithms. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 12, pp. 2408–2411 (1987). doi:10.1109/ICASSP.1987.1169923

  17. Liu, G., Feng, Q.: ASIC design of low-power reconfigurable FFT processor. In: International Conference on ASIC (ASICON), pp. 44–47 (2007). doi:10.1109/ICASIC.2007.4415563

  18. Perahia, E., Cordeiro, C., Park, M., Yang, L.L.: IEEE 802.11ad: defining the next generation multi-Gbps Wi-Fi. In: IEEE Consumer Communications and Networking Conference (CCNC), pp. 1–5 (2010). doi:10.1109/CCNC.2010.5421713

  19. Raghavan, P., Lambrechts, A., Jayapala, M., Catthoor, F., Verkest, D., Corporaal, H.: Very wide register: an asymmetric register file organization for low power embedded processors. In: Design, Automation and Test in Europe (DATE). IMEC (2007)

    Google Scholar 

  20. Rowen, C., Nuth, P., Fiske, S.: A DSP architecture optimized for wireless baseband. In: International Symposium on System-on-Chip (SOC), pp. 151–156 (2009). doi:10.1109/SOCC.2009.5335658

  21. Tang, S.N., Liao, C.H., Chang, T.Y.: An Area- and energy-efficient multimode FFT processor for WPAN/WLAN/WMAN systems. IEEE J. Solid-State Circuits 47(6), 1419–1435 (2012). doi:10.1109/JSSC.2012.2187406

    Article  Google Scholar 

  22. Target ASIP development toolsuite (inc. IP Designer, IP Programmer), Target Compiler Technologies. http://www.retarget.com/

  23. Zainal, M., Yoshizawa, S., Miyanaga, Y.: Low power FFT design for wireless communication systems. In: International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pp. 1–4 (2008). doi:10.1109/ISPACS.2009.4806724

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fasthuber .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fasthuber, R., Catthoor, F., Raghavan, P., Naessens, F. (2013). Case Study 3: DSIP Architecture Instance for FFT Computation. In: Energy-Efficient Communication Processors. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4992-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4992-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4991-1

  • Online ISBN: 978-1-4614-4992-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics