Alteration of Circulating Mitochondrial DNA Concentration After Irradiation

  • Mei Zhang
  • Bingrong Zhang
  • Yansong Guo
  • Lei Zhang
  • Shanmin Yang
  • Liangjie Yin
  • Sadasivan Vidyasagar
  • David Maguire
  • Steve Swarts
  • Zhenhuan Zhang
  • Amy Zhang
  • Lurong Zhang
  • Paul Okunieff
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 765)

Abstract

Mitochondrial DNA (mtDNA) is maternally inherited and controls the oxygen-related production of adenosine-5′-triphosphate, which is transported from the mitochondria to other cellular compartments and used as energy for cellular activities. The mtDNA is physically separated from nuclear DNA (nDNA). Ionizing radiation (IR) causes the release of both mtDNA and nDNA into circulation. Our previous study demonstrated that nDNA has potential to be a biodosimeter. In this study, branched DNA technology was used to explore the alteration pattern of mtDNA after IR. C57BL/6 mice were exposed to 0, 1.5, 3, 6, 8, or 10 Gy total body irradiation; thereafter, plasma mtDNA was assessed with samples collected at 3, 6, 9, 15, 24, 48, 72, or 168 h. We found that: (1) the designed probesets were specific for mtDNA extracted from the liver, and they recognized the small amount of mtDNA mixed in the nDNA; (2) plasma mtDNA exhibited a statistically significant increase only at 6 h after 8 Gy irradiation. The alteration of mtDNA was not dose-dependent or time-dependent; hence, it is unlikely to be an effective biodosimeter.

Keywords

Circulating mitochondrial DNA Irradiation 

Notes

Acknowledgments

This project is supported in part by U19 AI067733, RC1AI078519, RC2-AI-087580, RC1-AI081274 (NIAID/NIH), and UF Shands Cancer Center startup funds. We thank Kate Casey-Sawicki for editing this work.

References

  1. 1.
    Morales A, Miranda M, Sanchez-Reyes A, Biete A, Fernandez-Checa JC (1998) Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys 42:191–203CrossRefPubMedGoogle Scholar
  2. 2.
    Wilding CS, Cadwell K, Tawn EJ, Relton CL, Taylor GA et al (2006) Mitochondrial DNA mutations in individuals occupationally exposed to ionizing radiation. Radiat Res 165:202–207CrossRefPubMedGoogle Scholar
  3. 3.
    Murphy JE, Nugent S, Seymour C, Mothersill C (2005) Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat Res 585:127–136CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang H, Maguire DJ, Zhang M, Zhang L, Okunieff P (2011) Elevated mitochondrial DNA copy number and POL-gamma expression but decreased expression of TFAM in murine intestine following therapeutic dose irradiation. Adv Exp Med Biol 701:201–206CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang H, Maguire D, Swarts S, Sun W, Yang S et al (2009) Replication of murine mitochondrial DNA following irradiation. Adv Exp Med Biol 645:43–48CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Evdokimovskii EV, Patrushev MV, Ushakova TE, Gaziev AI (2007) Sharp changes in the copy number of mtDNA and its transcription in the blood cells of X-ray irradiated mice are observed, and mtDNA fragments appear in the blood serum. Radiats Biol Radioecol 47:402–407PubMedGoogle Scholar
  7. 7.
    Evdokimovsky EV, Ushakova TE, Kudriavtcev AA, Gaziev AI (2011) Alteration of mtDNA copy number, mitochondrial gene expression and extracellular DNA content in mice after irradiation at lethal dose. Radiat Environ Biophys 50:181–188CrossRefPubMedGoogle Scholar
  8. 8.
    Flynn DF, Goans RE (2006) Nuclear terrorism: triage and medical management of radiation and combined-injury casualties. Surg Clin North Am 86:601–636CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang L, Zhang M, Yang S, Cao Y, Bingrong Zhang S et al (2010) A new biodosimetric method: branched DNA-based quantitative detection of B1 DNA in mouse plasma. Br J Radiol 83:694–701CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang H, Zhang SB, Sun W, Yang S, Zhang M et al (2009) B1 sequence-based real-time quantitative PCR: a sensitive method for direct measurement of mouse plasma DNA levels after gamma irradiation. Int J Radiat Oncol Biol Phys 74:1592–1599CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vasilyeva IN (2001) Low-molecular-weight DNA in blood plasma as an index of the influence of ionizing radiation. Ann N Y Acad Sci 945:221–228CrossRefPubMedGoogle Scholar
  12. 12.
    Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 85:6465–6467CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mei Zhang
    • 1
  • Bingrong Zhang
    • 1
  • Yansong Guo
    • 1
  • Lei Zhang
    • 1
  • Shanmin Yang
    • 1
  • Liangjie Yin
    • 1
  • Sadasivan Vidyasagar
    • 1
  • David Maguire
    • 1
  • Steve Swarts
    • 1
  • Zhenhuan Zhang
    • 1
  • Amy Zhang
    • 1
  • Lurong Zhang
    • 1
  • Paul Okunieff
    • 1
  1. 1.Department of Radiation OncologyUniversity of FloridaGainesvilleUSA

Personalised recommendations