Skip to main content

Electroencephalography

  • Chapter
  • First Online:

Abstract

Our knowledge about brain function increased dramatically in the last decades due to the development and refinement of several recording techniques. Such advances flourished at different levels, ranging from the study of synaptic activity at the microscopic level to the refinement of brain imaging techniques at a macroscopic level. Modern data acquisition systems and new electrode designs enabled the simultaneous recording from dozens of neurons at a larger scale, and powerful computers allowed more complex simulations and data analysis, thus giving rise to the field of computational neuroscience. A somewhat less spectacular but also remarkable and steady progress has been made at an intermediate mesoscopic level (Freeman 1975, 1999) in the analysis of electroencephalograms (EEGs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473

    PubMed  CAS  Google Scholar 

  • Basar E, Bullock T (eds) (1992) Induced rhythms in the brain. Birkhauser, Boston

    Google Scholar 

  • Birbaumer N, Elbert T, Canavan AGM, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiol Rev 70:1–41

    PubMed  CAS  Google Scholar 

  • Bullock TH (1992) Introduction to induced rhythms: a widespread, heterogeneous class of oscillations. In: Basar E, Bullock T (eds) Induced rhythms in the brain. Birkhauser, Boston

    Google Scholar 

  • Bullock TH, Hofmann MH, New JG, Nahm FK (1991) Dynamics properties of visual evoked potentials in the tectum of cartilaginous and bony fishes, with neuroethological implications. J Exp Zool Suppl 5:142–155

    Google Scholar 

  • Bullock TH, Karamursel S, Achimowics JZ, McClune MC, Başar-Eroglu C (1994) Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr Clin Neurophysiol 91:42–53

    Article  PubMed  CAS  Google Scholar 

  • Celesia GG (1993) Visual evoked potentials and electroretinograms. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  • Celesia GG, Grigg MM (1993) Auditory evoked potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  • Duffy FH, Burchfiel JL, Lombroso CT (1979) Brain electrical activity mapping (BEAM): a method for extending the clinical utility of EEG and evoked potential data. Ann Neurol 5:309–321

    Article  PubMed  CAS  Google Scholar 

  • Erwin CW, Rozear MP, Radtke RA, Erwin AC (1993) Somatosensory evoked potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  • Fischer C, Morlet D, Bouchet P, Luante J, Jourdan C, Salford F (1999) Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 11:1601–1610

    Article  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Freeman WJ (1999) How the brains make up their minds. Weidenfeld & Nicholson, London

    Google Scholar 

  • Freeman WJ, Skarda CA (1981) Spatial EEG-patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res Rev 10:147–175

    Article  Google Scholar 

  • Gevins AS (1987) Overview of computer analysis. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam

    Google Scholar 

  • Gray CM, Koenig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Kutas M (1983) Electrophysiology of cognitive processing. Annu Rev Psychol 34:33–61

    Article  PubMed  CAS  Google Scholar 

  • Holroyd CB, Coles GH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109:679–709

    Article  PubMed  Google Scholar 

  • Jongsma MLA, Eichele T, Quian Quiroga R, Jenks KM, Desain P, Honing H, VanRijn CM (2005) The effect of expectancy on omission evoked potentials (OEPs) in musicians and non-musicians. Psychophysiology 42:191–2001

    Article  PubMed  Google Scholar 

  • Kane NM, Curry SH, Butler SR, Gummins BH (1993) Electrophysiological indicator of awakening from coma. Lancet 341:688

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber HH, Deeke L (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen. Bereitschaftspotential und reafferente Potentiale. Pfluegers Arch 248:1–17

    Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205

    Article  PubMed  CAS  Google Scholar 

  • Laurent G, Naraghi M (2003) Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci 14:2993–3004

    Google Scholar 

  • Laurent G, Wehr M, Davidowitz H (1996) Odour encoding by temporal sequences of firing in oscillating neural assemblies. J Neurosci 16:3837–3847

    PubMed  CAS  Google Scholar 

  • Lehmann D (1987) Principles of spatial analysis. In: Gevins AS, Remond A (eds) Methods of analysis of brain electrical and magnetic signals. Elsevier, Amsterdam

    Google Scholar 

  • Lopes da Silva F (1993) EEG analysis: theory and practice. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  • Molnar M (1994) On the origin of the P3 event-related potential component. Int J Psychophysiol 17:129–144

    Article  PubMed  CAS  Google Scholar 

  • Naatanen R (2003) Mismatch negativity: clinical research and possible applications. Int J Psychophysiol 48:179–188

    Article  PubMed  Google Scholar 

  • Naatanen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive intelligence’ in the auditory cortex. Trends Neurosci 24:283–288

    Article  PubMed  CAS  Google Scholar 

  • Niedermeyer E, Lopes da Silva F (eds) (1993) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 1097–1123

    Google Scholar 

  • Nieuwenhuis S, Holroyd CB, Mol N, Coles MGH (2004) Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neurosci Biobehav Rev 28:441–448

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24:91–95

    PubMed  Google Scholar 

  • Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, Boston

    Google Scholar 

  • Picton TW (1990) Auditory evoked potentials. In: Daly DD, Pedley TA (eds) Current practice of clinical electroencephalography. Raven, New York

    Google Scholar 

  • Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479

    Article  PubMed  CAS  Google Scholar 

  • Polich J (1991) P300 in clinical applications: meaning, method and measurement. Am J EEG Technol 31:201–231

    Google Scholar 

  • Polich J (2002) Neuropsychology of P3a and P3b: a theoretical overview. In: Arikan K, Moore N (eds) Advances in electrophysiology in clinical practice and research. Kjellberg, Inc, Wheaton

    Google Scholar 

  • Pritchard WS (1981) Psychophysiology of P300. Psychol Bull 89:506–540

    Article  PubMed  CAS  Google Scholar 

  • Quian Quiroga R, Schürmann M (1999) Functions and sources of event-related EEG alpha oscillations studied with the Wavelet Transform. Clin Neurophysiol 110:643–655

    Article  Google Scholar 

  • Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, Amsterdam

    Google Scholar 

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: Long-distance synchronization of human brain activity. Nature 397:430–433

    Article  PubMed  CAS  Google Scholar 

  • Ruchkin DS, Sutton S, Munson R, Silver K, Macar F (1981) P300 and feedback provided by absence of the stimulus. Psychophysiology 18:271–282

    Article  PubMed  CAS  Google Scholar 

  • Scherg M, Berg P (1996) New concepts of brain source imaging and localization. Electroencephalogr Clin Neurophysiol Suppl 46:127–137

    Google Scholar 

  • Simson R, Vaughan HG Jr, Ritter W (1976) The scalp topography of potentials associated with missing visual or auditory stimuli. Electroencephalogr Clin Neurophysiol 40:33–42

    Article  PubMed  CAS  Google Scholar 

  • Tecce JJ, Cattanach L (1993) Contingent negative variation (CNV). In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 1097–1123

    Google Scholar 

  • Vaughan HG Jr, Costa D, Ritter W (1968) Topography of the human motor potential. Electroencephalogr Clin Neurophysiol Suppl 27:61–70

    Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation. An electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Freeman, W.J., Quiroga, R.Q. (2013). Electroencephalography. In: Imaging Brain Function With EEG. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4984-3_1

Download citation

Publish with us

Policies and ethics