Skip to main content

Diffuse Optical Tomography for Brain Imaging: Theory

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

  • 2008 Accesses

Abstract

Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yodh A, Chance B (1995) Spectroscopy and imaging with diffusing light. Phys Today 48:34–40

    Article  Google Scholar 

  2. Gibson A, Dehghani H (2009) Diffuse optical imaging. Philos Trans R Soc A 367:3055–3072

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Jiang H, Iftimia N, Xu Y, Eggert J, Fajardo L, Klove K (2002) Near-infrared optical imaging of the breast with model-based reconstruction. Acad Radiol 9:186–194

    Article  Google Scholar 

  4. Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson JJ, Tosteson TD, Poplack SP, Paulsen KD (2003) Interpreting hemoglobin and water concentration oxygen saturation and scattering measured in vivo by near-infrared breast tomography. Proc Natl Acad Sci U S A 100:12349–12354

    Article  ADS  Google Scholar 

  5. Zhu Q, Chen NG, Kurtzman SC (2003) Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound. Opt Lett 28:337–339

    Article  ADS  Google Scholar 

  6. Durduran T, Choe R, Culver JP, Zubkov L, Holboke MJ, Giammarco J, Chance B, Yodh AG (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47:2847–2861

    Article  Google Scholar 

  7. Boas DA, Culver JP, Stott JJ, Dunn AK (2002) Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express 10:159–169

    Article  ADS  Google Scholar 

  8. Hielscher AH, Klose AD, Scheel AK, Moa-Anderson B, Backhaus M, Netz U, Beuthan J (2004) Sagittal laser optical tomography for imaging of rheumatoid finger joints. Phys Med Biol 49:1147–1163

    Article  Google Scholar 

  9. Pifferi A, Torricelli A, Taroni P, Bassi A, Chikoidze E, Giambattistelli E, Cubeddu R (2004) Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. J Biomed Opt 9:474–480

    Article  Google Scholar 

  10. Yuan Z, Zhang Q, Jiang HB (2007) 3D diffuse optical tomography imaging of osteoarthritis: initial results in finger joints. J Biomed Opt 12:034001

    Article  Google Scholar 

  11. Yuan Z, Jiang H (2007) Image reconstruction schemes that combines modified Newton method and efficient initial guess estimate for optical tomography of finger joints. Appl Opt 46:2757–2768

    Article  ADS  Google Scholar 

  12. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002) In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1:82–88

    Article  Google Scholar 

  13. Cherry SR (2004) In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49:R13–R48

    Article  ADS  Google Scholar 

  14. Davis SC, Dehghani H, Wang J, Jiang S, Pogue BW, Paulsen KD (2007) Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization. Opt Express 15:4066–4082

    Article  ADS  Google Scholar 

  15. Zhou C, Choe R, Shah N, Durduran T, Yu G, Durkin A, Hsiang D, Mehta R, Butler J, Cerussi A, Tromberg BJ, Yodh AG (2007) Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy. J Biomed Opt 12:051903

    Article  Google Scholar 

  16. Wilson BC, Patterson MS (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360

    Article  Google Scholar 

  17. Pogue BW, Pitts JD, Mycek MA, Sloboda RD, Wilmot CM, Brandsema JF, O’Hara JA (2001) In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy. Photochem Photobiol 74:817–824

    Article  Google Scholar 

  18. Cerussi A, Shah N, Hsiang D, Durkin A, Butler J, Tromberg BJ (2006) In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J Biomed Opt 11:044005

    Article  Google Scholar 

  19. Dehghani H, Pogue BW, Poplack SP, Paulsen KD (2003) Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results. Appl Opt 42:135–145

    Article  ADS  Google Scholar 

  20. Hebden JC, Yates TD, Gibson A, Everdell N, Arridge SR, Chicken DW, Douek M, Keshtgar MRS (2005) Monitoring recovery after laser surgery of the breast with optical tomography: a case study. Appl Opt 44:1898–1904

    Article  ADS  Google Scholar 

  21. Yuan Z, Zhang Q, Sobel E, Jiang H (2010) Image-guided optical spectroscopy in diagnosis of osteoarthritis: a clinical study. Biomed Opt Express 1:74–86

    Article  Google Scholar 

  22. Iftimia N, Jiang H (2000) Quantitative optical image reconstruction of turbid media by use of direct-current measurements. Appl Opt 39:5256–5261

    Article  ADS  Google Scholar 

  23. Jiang H, Paulsen KD, Osterberg U, Pogue B, Patterson M (1996) Optical image reconstruction using frequency-domain data: simulations and experiments. J Opt Soc Am A 13:253–266

    Article  ADS  Google Scholar 

  24. Paulsen KD, Jiang H (1995) Spatially-varying optical property reconstruction using a finite element diffusion equation approximation. Med Phys 22:691–701

    Article  Google Scholar 

  25. Tromberg BJ, Pogue BW, Paulson KD, Yodh AG, Boas DA, Cerussi AE (2008) Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys 35:2443–2452

    Article  Google Scholar 

  26. Carpenter CM, Pogue BW, Jiang S, Dehghani H, Wang X, Paulson KD (2007) Image-guided optical spectroscopy provides molecular-specific information in vivo: MRI-guided spectroscopy of breast cancer hemoglobin, water, and scatter size. Opt Lett 32:933–935

    Article  ADS  Google Scholar 

  27. Heekeren HR, Obrig H, Wenzel R, Eberle K, Ruben J, Villringer K, Kurth R, Villringer A (1997) Cerebral haemoglobin oxygenation during sustained visual stimulation—a near-infrared spectroscopy study. Philos Trans R Soc Lond B Biol Sci 352:743–750

    Article  ADS  Google Scholar 

  28. Meek JH, Elwell CE, Khan MJ, Romaya J, Wyatt JS, Delpy DT, Zeki S (1995) Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy. Proc R Soc Lond B Biol Sci 261:351–356

    Article  ADS  Google Scholar 

  29. Ruben J, Wenzel R, Obrig H, Villringer K, Bernarding J, Hirth C, Heekeren H, Dirnagl U, Villringer A (1997) Haemoglobin oxygenation changes during visual stimulation in the occipital cortex. Adv Exp Med Biol 428:181–187

    Article  Google Scholar 

  30. Sakatani K, Chen S, Lichty W, Zuo H, Wang YP (1999) Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Hum Dev 55:229–236

    Article  Google Scholar 

  31. Franceschini MA, Fantini S, Thompson JH, Culver JP, Boas DA (2003) Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near infrared optical imaging. Psychophysiology 40:548–560

    Article  Google Scholar 

  32. Colier WN, Quaresima V, Oeseburg B, Ferrari M (1999) Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp Brain Res 129:457–461

    Article  Google Scholar 

  33. Hirth C, Obrig H, Villringer K, Thiel A, Bernarding J, Muhlnickel W, Flor H, Dirnagl U, Villringer A (1996) Non-invasive functional mapping of the human motor cortex using near-infrared spectroscopy. Neuroreport 7:1977–1981

    Article  Google Scholar 

  34. Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16:817–826

    Article  Google Scholar 

  35. Sato H, Takeuchi T, Sakai KL (1999) Temporal cortex activation during speech recognition: an optical topography study. Cognition 73:B55–B66

    Article  Google Scholar 

  36. Adelson PD, Nemoto E, Scheuer M, Painter M, Morgan J, Yonas H (1999) Noninvasive continuous monitoring of cerebral oxygenation periictally using near-infrared spectroscopy: a preliminary report. Epilepsia 40:1484–1489

    Article  Google Scholar 

  37. Sokol DK, Markand ON, Daly EC, Luerssen TG, Malkoff MD (2000) Near infrared spectroscopy (NIRS) distinguishes seizure types. Seizure 9:323–327

    Article  Google Scholar 

  38. Steinhoff BJ, Herrendorf G, Kurth C (1996) Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study. Seizure 5:97–101

    Google Scholar 

  39. Watanabe E, Maki A, Kawaguchi F, Yamashita Y, Koizumi H, Mayanagi Y (2000) Noninvasive cerebral blood volume measurement during seizures using multichannel near infrared spectroscopic topography. J Biomed Opt 5:287–290

    Article  Google Scholar 

  40. Eschweiler GW, Wegerer C, Schlotter W, Spandl C, Stevens A, Bartels M (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99:161–172

    Article  Google Scholar 

  41. Matsuo K, Kato T, Fukuda M, Kato N (2000) Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy. J Neuropsychiatry Clin Neurosci 12:465–471

    Article  Google Scholar 

  42. Okada F, Takahashi N, Tokumitsu Y (1996) Dominance of the nondominant T hemisphere in depression. J Affect Disord 37:13–21

    Article  Google Scholar 

  43. Frostig RD, Lieke EE, Tso DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A 87:6082–6086

    Article  ADS  Google Scholar 

  44. Hanlon EB, Itzkan I, Dasari RR, Feld MS, Ferrante RJ, McKee AC, Lathi D, Kowall NW (1999) Near-infrared fluorescence spectroscopy detects Alzheimer’s disease in vitro. Photochem Photobiol 70:236–242

    Google Scholar 

  45. Hock C, Villringer K, Muller-Spahn F, Hofmann M, Schuh-Hofer S, Heekeren H, Wenzel R, Dirnagl U, Villringer A (1996) Near infrared spectroscopy in the diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 777:22–29

    Article  ADS  Google Scholar 

  46. Chen WG, Li PC, Luo QM, Zeng SQ, Hu B (2000) Hemodynamic assessment of ischemic stroke with near-infrared spectroscopy. Space Med Med Eng 13:84–89

    Google Scholar 

  47. Nemoto EM, Yonas H, Kassam A (2000) Clinical experience with cerebral oximetry in stroke and cardiac arrest. Crit Care Med 28:1052–1054

    Article  Google Scholar 

  48. Saitou H, Yanagi H, Hara S, Tsuchiya S, Tomura S (2000) Cerebral blood volume and oxygenation among poststroke hemiplegic patients: effects of 13 rehabilitation tasks measured by near-infrared spectroscopy. Arch Phys Med Rehabil 81:1348–1356

    Article  Google Scholar 

  49. Vernieri F, Rosato N, Pauri F, Tibuzzi F, Passarelli F, Rossini PM (1999) Near infrared spectroscopy and transcranial Doppler in monohemispheric stroke. Eur Neurol 41:159–162

    Article  Google Scholar 

  50. Boas DA, Dale AM, Franceschini MA (2004) Diffuse optical imaging of brain activation: approaches to optimizing imaging sensitivity, resolution and accuracy. Neuroimage 23:s275–s288

    Article  Google Scholar 

  51. Taber KH, Hillman E, Hurley R (2010) Optical imaging: a new window to the adult brain. J Neuropsychiatry Clin Neurosci 22(4):356–360

    Article  Google Scholar 

  52. Koch SP, Habermehl C, Mehnert J et al (2010) High-resolution optical functional mapping of the human somatosensory cortex. Front Neuroenergetics 2:12

    Google Scholar 

  53. White BR, Culver JP (2010) Phase-encoded retinotopy as an evaluation of diffuse optical neuroimaging. Neuroimage 49:568–577

    Article  Google Scholar 

  54. White BR, Snyder AZ, Cohen AL et al (2009) Mapping the human brain at rest with diffuse optical tomography. Conf Proc IEEE Eng Med Biol Soc 2009:4070–4072

    Google Scholar 

  55. White BR, Snyder AZ, Cohen AL, Petersen SE, Raichle ME, Schlaggar BL, Culver JP (2009) Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. Neuroimage 47:148–156

    Article  Google Scholar 

  56. Arridge SR (1999) Optical tomography in medical imaging. Inverse Probl 15:R41–R93

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Boas DA, Brooks DH, Miller EL, Marzio CAD, Kilmer M, Gaudette RJ, Zhang Q (2001) Imaging the body with diffuse optical tomography. IEEE Signal Process Mag 18:57–75

    Article  ADS  Google Scholar 

  58. Schweiger M, Gibson AP, Arridge S (2003) Computational aspects of diffuse optical tomography. IEEE Comput Sci Eng 5:33–41

    Google Scholar 

  59. Yamamoto T, Maki A, Kadoya T, Tanikawa Y, Yamada Y, Okada E, Koizumi H (2002) Arranging optical fibres for the spatial resolution improvement of topographical images. Phys Med Biol 47:3429–3440

    Article  Google Scholar 

  60. Hielscher AH, Alcouffe RE, Barbour RL (1998) Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys Med Biol 43:1285–1302

    Article  Google Scholar 

  61. Yuan Z, Hu X, Jiang H (2009) A higher-order diffusion model for three-dimensional photon migration and image reconstruction in optical tomography. Phys Med Biol 54:65–88

    Article  Google Scholar 

  62. Tikhonov A (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  63. Levenberg K (1944) A method for the solution of certain nonlinear problems in least square. Q Appl Math 2:164–168

    MathSciNet  MATH  Google Scholar 

  64. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  65. Brooksby B, Dehghani H, Pogue B, Paulsen KD (2003) Near Infrared (NIR) tomography breast reconstruction with a prior structural information from MRI: algorithm development reconstruction heterogeneities. IEEE J Sel Top Quantum Electron 9:199–209

    Article  Google Scholar 

  66. Barbour RL, Graber HL, Chang J, Barbour SS, Koo PC, Aronson R (1995) MRI-guided optical tomography: prospects and computation for a new imaging method. IEEE Comput Sci Eng 2:63–77

    Article  Google Scholar 

  67. Zhang Q, Brukilacchio TJ, Li A, Scott J, Chaves T, Hillman E, Wu T, Chorlton M, Rafferty E, Moore RH, Kopans DB, Boas DA (2005) Coregistered tomography x-ray and optical breast imaging: initial results. J Biomed Opt 10:024033

    Article  Google Scholar 

  68. Yuan Z, Jiang H (2010) High resolution x-ray guided three dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: morphological and functional assessments. Med Phys 37(8):4343–4354

    Article  Google Scholar 

  69. Konecky SD, Wienery R, Choe R, Corlu A, Lee K, Srinivasy SM, Saffer JR, Freifeldery R, Karpy JS, Yodh AG (2006) Diffuse optical tomography and position emission tomography of human breast. Biomedical Optics Topical Meeting and Tabletop Exhibit, Fort Lauderdale, FL

    Google Scholar 

  70. Yuan Z, Zhang Q, Sobel E, Jiang HB (2008) Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints. J Biomed Opt 13:044006

    Article  Google Scholar 

  71. http://omlc.ogi.edu/spectra/hemoglobin/index.html

  72. Li A, Zhang Q, Culver JP, Miller E, Boas DA (2004) Reconstructing chromosphere concentrations images directly by continuous-wave diffuse optical tomography. Opt Lett 29:256–259

    Article  ADS  Google Scholar 

  73. Corlu A, Durduran T, Choe R, Schweiger M, Hillman EM, Arridge SR, Yodh AG (2003) Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt Lett 28:2339–2341

    Article  ADS  Google Scholar 

  74. Durduran T, Yu G, Burnett M, Detre J, Greenberg J, Wang J, Zhou C, Yodh AG (2004) Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett 29:1766–1768

    Article  ADS  Google Scholar 

  75. Dunn A, Devor A, Bolay H, Andermann M, Moskowitz M, Dale A, Boas DA (2003) Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett 28:28–30

    Article  ADS  Google Scholar 

  76. Lauritzen M (2001) Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab 21:1367–1383

    Article  Google Scholar 

  77. Logothetis NK, Pauls J, Augath M, trinath T, Oeltermann A (2001) Neurophysiological investigation of the basics of the fMRI signal. Nature 412:150–157

    Article  ADS  Google Scholar 

  78. Sakadzic S, Yuan S, Dilekoz E, Ruvinskaya S, Vinogradov A, Ayata C, Boas DA (2009) Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl Opt 48:169–177

    Article  ADS  Google Scholar 

  79. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878

    Article  ADS  Google Scholar 

  80. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 89:212–216

    Article  ADS  Google Scholar 

  81. Mintun MA, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187

    Google Scholar 

  82. Patel J, Marks K, Roberts I, Azzopardi D, Edwards AD (1998) Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green. Pediatr Res 43:34–39

    Article  Google Scholar 

  83. Fabricius M, Akgoren N, Dirnagl U, Lauritzen M (1997) Laminar analysis of cerebral blood flow in cortex of rats by laser-Doppler flowmetry, a pilot study. J Cereb Blood Flow Metab 17:1326–1336

    Article  Google Scholar 

  84. Cheung C, Culver JP, Takahashi K, Greenberg JH, Yodh AG (2001) In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Phys Med Biol 46:2053–2065

    Article  Google Scholar 

  85. Kirkham FJ, Padayachee TS, Parsons S, Seargeant LS, House FR, Gosling RG (1986) Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow. Ultrasound Med Biol 12:15–21

    Article  Google Scholar 

  86. Themelis G, D’Arceuil H, Diamond SG, Thaker S, Huppert TJ, Boas DA, Franceschini MA (2007) Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations. J Biomed Opt 12:014033

    Article  Google Scholar 

  87. Tsai AG, Johnson PC, Intaglietta M (2003) Oxygen gradients in the microcirculation. Physiol Rev 83:933–963

    Google Scholar 

  88. Sharan M, Vovenko EP, Vadapalli A, Popel AS, Pittman RN (2008) Experimental and theoretical studies of oxygen gradients in rat pial micro vessels. J Cereb Blood Flow Metab 28:1597–1604

    Article  Google Scholar 

  89. Michael M, William HP, Saul AT, William TV, Brian PF (1986–1992) Numerical recipes in Fortran 77. Cambridge University Press, Cambridge

    Google Scholar 

  90. Carp SA, Selb J, Fang Q, Moore R, Kopans DB, Rafferty E, Boas DA (2008) Dynamic functional and mechanical response of breast tissue to compression. Opt Express 16:16064–16078

    Article  ADS  Google Scholar 

  91. Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H, Ichikawa N (2003) Optical topography: practical problems and new applications. Appl Opt 42:3054–3062

    Article  ADS  Google Scholar 

  92. Zeff B, White BR, Dehghani H, Schlagger BL, Culver JP (2007) Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography. Proc Natl Acad Sci USA 104:12169–12174

    Article  ADS  Google Scholar 

  93. Wang Q, Liang X, Zhang Q, Camey P, Jiang H (2008) Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography. Med Phys 35:21–224

    Google Scholar 

  94. Hernandez MJ, Brennan RW, Nowman GS (1978) Cerebral blood flow autoregulation in the rats. Stroke 9:150–154

    Article  Google Scholar 

  95. Sharples PM, Stuart AG, Matthews DS, Aynsley-Green A, Eyre JA (1995) Cerebral blood flow and metabolism in children with severe head injury. Part 1: relation to age, Glasgow coma score, outcome, intracranial pressure, and time after injury. J Neurol Neurosurg Psychiatry 58:145–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yuan, Z., Jiang, H. (2013). Diffuse Optical Tomography for Brain Imaging: Theory. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics