Skip to main content

Nanoparticle-Mediated Photothermal Therapy of Brain Tumors

  • Chapter
  • First Online:
Optical Methods and Instrumentation in Brain Imaging and Therapy

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 3))

Abstract

Nanoparticles (10–1,000 nm diameter) have been investigated for use in numerous diagnostic and therapeutic applications. Gold nanoparticles are particularly appealing due to their biological inertness and the ability to conjugate a wide variety of ligands to their surface. Additionally, their optical properties can be tuned through variations of their size, shape, and composition. For example, gold–silica nanoshells, consisting of a spherical dielectric silica core (100–120 nm diameter) surrounded by a 10–20 nm gold shell, have a strong resonant absorption at approximately 800 nm where light has significant penetration in biological tissues. Following light absorption, surface electrons are photoexcited and the resultant heated electron gas is dissipated to the surrounding medium causing thermal damage. The ability of nanoparticles to convert optical energy to thermal energy makes them ideally suited for photothermal therapy (PTT). This review focuses on the utility of gold–silica nanoshells in PTT of brain tumors. PTT has proven effective in a number of in vitro and in vivo studies. Of particular clinical relevance are results demonstrating PTT efficacy in an orthotopic canine model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fadeel B, Kasemo B, Malmsten M, Stromme M (2010) Nanomedicine: reshaping clinical practice. J Intern Med 267(1):2–8

    Article  Google Scholar 

  2. Gewin V (2009) Big opportunities in a small world. Nature 460(7254):540–541

    Article  Google Scholar 

  3. Muthu MS, Singh S (2009) Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond) 4(1):105–118

    Article  Google Scholar 

  4. Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1(1):1–6

    Article  Google Scholar 

  5. Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8(11):1081–1083

    Article  Google Scholar 

  6. Lead JR, Smith E (2009) Environmental and human health impacts of nanotechnology. Wiley, Chichester

    Book  Google Scholar 

  7. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7(6):753–763

    Article  Google Scholar 

  8. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  Google Scholar 

  9. Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753

    Article  Google Scholar 

  10. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  11. Kumar CSSR (2007) Nanomaterials for medical diagnosis and therapy. Wiley-VCH, Weinheim

    Google Scholar 

  12. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681–693

    Article  Google Scholar 

  13. Li JL, Gu M (2010) Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE J Sel Topics Quantum Electron 16(4):989–996

    Article  Google Scholar 

  14. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  Google Scholar 

  15. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  Google Scholar 

  16. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22

    Article  Google Scholar 

  17. Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomedicine 1(2):149–154

    Article  Google Scholar 

  18. Chen JY, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li XD, Xia YN (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17:2255–2261

    Article  Google Scholar 

  19. Zhou HS, Honma I, Komiyama H, Haus JW (1994) Controlled synthesis and quantum size effect in gold-coated nanoparticles. Phys Rev B 50(16):12052–12056

    Article  ADS  Google Scholar 

  20. Radwan SH, Azzazy HM (2009) Gold nanoparticles for molecular diagnostics. Expert Rev Mol Diagn 9(5):511–524

    Article  Google Scholar 

  21. Cai QY, Kim SH, Choi KS, Kim SY, Byun SJ, Kim KW, Park SH, Juhng SK, Yoon KH (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Invest Radiol 42(12):797–806

    Article  Google Scholar 

  22. Noreen R, Pineau R, Chien C, Cestelli-Guidi M, Hwu Y, Marcelli A et al (2011) Functional histology of glioma vasculature by FTIR imaging. Anal Bioanal Chem 401:795–801

    Article  Google Scholar 

  23. Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32

    Google Scholar 

  24. Libermann TA, Nussbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ulrich A, Schlessinger J (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumorus of glial origin. Nature 313:144–147

    Article  ADS  Google Scholar 

  25. Terentyuk GS, Maslyakova GN, Suleymanova LV, Khlebtsov NG, Khlebtsov BN, Akchurin GG et al (2009) Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy. J Biomed Opt 14(2):021016

    Article  Google Scholar 

  26. Curley SA, Cherukuri P, Briggs K, Patra CR, Upton M, Dolson E, Mukherjee P (2008) Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J Exp Ther Oncol 7:313–326

    Google Scholar 

  27. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  ADS  Google Scholar 

  28. Stern JM, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753

    Article  Google Scholar 

  29. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  ADS  Google Scholar 

  30. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141

    Article  Google Scholar 

  31. Choi BJ, Yang J, Jang E, Suh JS, Huh YM, Lee K, Haam S (2011) Gold nanostructures as photothermal therapy agent for cancer. Anticancer Agents Med Chem 11(10):953–964

    Article  Google Scholar 

  32. Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003

    Article  Google Scholar 

  33. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66

    Article  Google Scholar 

  34. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia S (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–3900

    Article  Google Scholar 

  35. Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7:94–104

    Article  Google Scholar 

  36. Kim J-Y, Choi WI, Kim YH, Tae G, Lee SY, Kim K, Kwon IC (2010) In-vivo tumor targeting of pluronic-based nano-carriers. J Control Release 147:109–117

    Article  Google Scholar 

  37. Kim B, Han G, Toley BJ, Kim CK, Rostello VM, Forbers NS (2010) Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 5(6):465–472

    Article  ADS  Google Scholar 

  38. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851

    Article  Google Scholar 

  39. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  Google Scholar 

  40. Turkevitch J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  41. Oldenburg SJ, Jackson JB, Westcott SL, Halas NJ (1998) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899

    Article  ADS  Google Scholar 

  42. Khlebtsov NF, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40(3):1647–1671

    Article  Google Scholar 

  43. Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466

    Article  Google Scholar 

  44. James WD, Hirsch LR, West JL, O’Neal PD, Payne JD (2007) Applications of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 271:455–459

    Article  Google Scholar 

  45. Goodrich GP, Bao L, Gill-Sharp K, Sang KL, Wang J, Payne JD (2010) Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods. J Biomed Opt 15(1):018001

    Article  Google Scholar 

  46. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahasi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347

    Article  Google Scholar 

  47. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66(2):274–280

    Article  Google Scholar 

  48. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  ADS  Google Scholar 

  49. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915

    Article  ADS  Google Scholar 

  50. Everts M (2007) Thermal scalpel to target cancer. Expert Rev Med Devices 4(2):131–136

    Article  Google Scholar 

  51. Lin AW, Lewinski NA, West JL, Halas NJ, Drezek RA (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10(6):064035

    Article  Google Scholar 

  52. Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519

    Article  Google Scholar 

  53. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D et al (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765

    Article  ADS  Google Scholar 

  54. Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C (2001) Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3:489–499

    Article  Google Scholar 

  55. Hirschberg H, Baek SK, Kwon YJ, Sun CH, Madsen SJ (2010) Bypassing the blood–brain barrier: delivery of therapeutic agents by macrophages. Proc SPIE 7548:3Z-1

    Google Scholar 

  56. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817

    Article  Google Scholar 

  57. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  Google Scholar 

  58. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79(939):248–253

    Article  Google Scholar 

  59. Huang XL, Zhang B, Ren L, Ye SF, Sun LP, Zhang QQ, Tan MC, Chow GM (2008) In vivo toxic studies and biodistribution of near infrared sensitive Au-Au(2)S nanoparticles as potential drug delivery carriers. J Mater Sci Mater Med 19(7):2581–2588

    Article  Google Scholar 

  60. Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL (2008) Immunonanoshells for targeted photothermal ablation in medulloblastoma and glioma: an in vitro evaluation using human cell lines. J Neurooncol 86(2):165–172

    Article  Google Scholar 

  61. Sathornsumetee S, Rich JN (2008) Designer therapies for glioblastoma multiforme. Ann N Y Acad Sci 1142:108–132

    Article  ADS  Google Scholar 

  62. Day ES, Thompson PA, Zhang L, Lewinski NA, Ahmed N, Drezek RA et al (2011) Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. J Neurooncol 104(1):55–63

    Article  Google Scholar 

  63. Baek SK, Makkouk AR, Krasieva T, Sun CH, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104(2):439–448

    Article  Google Scholar 

  64. Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK et al (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69(4):1659–1667

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen J. Madsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Makkouk, A.R., Madsen, S.J. (2013). Nanoparticle-Mediated Photothermal Therapy of Brain Tumors. In: Madsen, S. (eds) Optical Methods and Instrumentation in Brain Imaging and Therapy. Bioanalysis, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4978-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4978-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4977-5

  • Online ISBN: 978-1-4614-4978-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics