Optical Properties of Brain Tissue

Part of the Bioanalysis book series (BIOANALYSIS, volume 3)


Accurate assessment of light distributions in the brain is vital for both diagnostic and therapeutic applications. This, in turn, requires knowledge of the optical properties of brain tissues. The optical properties of a variety of mammalian brain tissues are summarized in this review. Both ex vivo and in vivo measurement techniques are reviewed as are solutions to the radiation transport equation which are required for calculating light distributions in the brain.


Optical Property Monte Carlo Fluence Rate Scatter Phase Function Bulk Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ishimaru A (1978) Wave propagation and scattering in random media, Ch. 7 and 9. Academic, New YorkGoogle Scholar
  2. 2.
    Wilson BC, Patterson MS (1986) The physics of photodynamic therapy. Phys Med Biol 31:327–360CrossRefGoogle Scholar
  3. 3.
    Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109ADSCrossRefGoogle Scholar
  4. 4.
    Chandrasekhar S (1950) Radiative transfer. Oxford University Press, LondonMATHGoogle Scholar
  5. 5.
    Rybicki GB (1971) The searchlight problem with isotropic scattering. J Quant Spectrosc Radiat Transfer 11:827–849ADSCrossRefGoogle Scholar
  6. 6.
    Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New York, pp 103–144Google Scholar
  7. 7.
    van de Hulst HC (1980) Multiple light scattering tables, formulas and applications. Academic, New YorkGoogle Scholar
  8. 8.
    Wang LH, Jacques SL, Zheng LQ (1995) MCML—Monte Carlo modeling of light transport in multilayered tissues. Comput Methods Programs Biomed 47:131–146CrossRefGoogle Scholar
  9. 9.
    Wilson BC, Adam G (1983) A Monte Carlo model for the absorption and flux distributions of light in tissue. Med Phys 10:824–830CrossRefGoogle Scholar
  10. 10.
    Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue. 1. Models of radiation transport and their application. Lasers Med Sci 6:155–168CrossRefGoogle Scholar
  11. 11.
    Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. Z Tech Phys 12:593–601Google Scholar
  12. 12.
    Kubelka P (1948) New contributions to the optics of intensely light scattering materials. J Opt Soc Am 38:448–457MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Prahl SA, van Gemert MJC, Welch AJ (1993) Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt 32:559–568ADSCrossRefGoogle Scholar
  14. 14.
    Pickering JW, Prahl SA, van Wieringen N, Beek JF, Sterenborg HJ, van Gemert MJC (1993) Double-integrating-sphere system for measuring the optical properties of tissue. Appl Opt 32:339–410CrossRefGoogle Scholar
  15. 15.
    Pickering JW, Bosman S, Posthumus P, Blokland P, Beek JF, van Gemert MJC (1993) Changes in the optical properties (at 632.8 nm) of slowly heated myocardium. Appl Opt 32:367–371ADSCrossRefGoogle Scholar
  16. 16.
    Wilson BC (1995) Measurement of tissue optical properties: methods and theory. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp 233–274Google Scholar
  17. 17.
    Cheong W, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185ADSCrossRefGoogle Scholar
  18. 18.
    Wilson BC, Patterson MS, Flock ST (1987) Indirect versus direct techniques for the measurement of the optical properties of tissues. Photochem Photobiol 46:929–935CrossRefGoogle Scholar
  19. 19.
    Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue. 2: optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6:379–390CrossRefGoogle Scholar
  20. 20.
    Flock ST, Wilson BC, Patterson MS (1987) Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. Med Phys 14:835–841CrossRefGoogle Scholar
  21. 21.
    Key H, Davies ER, Jackson PC, Wells PNT (1991) Optical attenuation characteristics of breast tissues at visible and near-infrared wavelengths. Phys Med Biol 36:579–590CrossRefGoogle Scholar
  22. 22.
    Firbank M, Hiraoka M, Essenpreis M, Delpy DT (1993) Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys Med Biol 38:503–510CrossRefGoogle Scholar
  23. 23.
    Ghosh N, Mohanty SK, Majumder SK, Gupta PK (2001) Measurement of optical transport properties of normal and malignant human breast tissue. Appl Opt 40:176–184ADSCrossRefGoogle Scholar
  24. 24.
    Popp AK, Valentine MT, Kaplan PD, Weitz DA (2003) Microscopic origin of light scattering in tissue. Appl Opt 42:2871–2880ADSCrossRefGoogle Scholar
  25. 25.
    van de Hulst HC (1980) Light scattering by small particles. Dover, New YorkGoogle Scholar
  26. 26.
    Cheong W (1995) Appendix to chapter 8: summary of optical properties. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp 275–303Google Scholar
  27. 27.
    Wilson BC, Jeeves WP, Lowe DM (1985) In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 42:153–162CrossRefGoogle Scholar
  28. 28.
    Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selective native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol 47:2059–2073CrossRefGoogle Scholar
  29. 29.
    Beek JF, Blokland P, Posthumus P, Aalders M, Pickering JW, Sterenborg HJ, van Gemert MJ (1997) In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Phys Med Biol, 42:2255–2261Google Scholar
  30. 30.
    Gebhart SC, Lin WC, Mahadevan-Jansen A (2006) In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Phys Med Biol 51:2011–2027CrossRefGoogle Scholar
  31. 31.
    Doiron DR, Svaasand LO, Profio AE (1983) Light dosimetry in tissue applications to photoradiation therapy. In: Kessel D, Dougherty TJ (eds) Porphyrin photosensitization. Plenum Press, New York, pp 63–75CrossRefGoogle Scholar
  32. 32.
    Doiron DR, Svaasand LO, Profio AE (1982) Wavelength and dosimetry considerations in photoradiation therapy (PRT). In: Berns M (ed) Proc. SPIE 357, lasers in surgery and medicine Bellingham, WAGoogle Scholar
  33. 33.
    Muller PJ, Wilson BC (1986) An update of the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol 31:1295–1297CrossRefGoogle Scholar
  34. 34.
    Wilson BC, Muller PJ, Yanche JC (1986) Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumors. Phys Med Biol 31:125–133CrossRefGoogle Scholar
  35. 35.
    Johns M, Giller CA, German DC, Liu H (2005) Determination of reduced scattering coefficient of biological tissue from a needle-like probe. Opt Express 13:4828–4842ADSCrossRefGoogle Scholar
  36. 36.
    Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2006) Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. Proc SPIE 6163:616310CrossRefGoogle Scholar
  37. 37.
    Chen Q, Chopp M, Madigan L, Dereski MO, Hetzel FW (1996) Damage threshold of normal rat brain in photodynamic therapy. Photochem Photobiol 64:163–167CrossRefGoogle Scholar
  38. 38.
    Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C (1999) In vivo local determination of tissue optical properties: applications to human brain. Appl Opt 38:4939–4950ADSCrossRefGoogle Scholar
  39. 39.
    Kim A, Roy M, Dadani F, Wilson BC (2010) A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Opt Express 18:5580–5594ADSCrossRefGoogle Scholar
  40. 40.
    Choi J, Wolf M, Toronov V, Wolf U, Polzonetti C, Hueber D, Safonova LP, Gupta R, Michalos A, Mantulin W, Gratton E (2004) Nonivasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J Biomed Opt 9:221–229CrossRefGoogle Scholar
  41. 41.
    Comelli D, Bassi A, Pifferi A, Taroni P, Torricelli A, Cubeddu R, Martelli F, Zaccanti G (2007) In vivo time-resolved spectroscopy of the human forehead. Appl Opt 46:1717–1725ADSCrossRefGoogle Scholar
  42. 42.
    Barnett AH, Culver JP, Sorensen AG, Dale A, Boas DA (2003) Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging. Appl Opt 42:3095–3108ADSCrossRefGoogle Scholar
  43. 43.
    Zhao J, Ding HS, Hou XL, Zhou CL, Chance B (2005) In vivo determination of the optical properties of infant brain using frequency-domain near-infrared spectroscopy. J Biomed Opt 10:024028-1Google Scholar
  44. 44.
    van der Zee P, Essenpreis M, Delpy DT (1993) Optical properties of brain tissue. In: Alfano RR, Chance B (eds) Photon migration and imaging in random media and tissues, Proc. SPIE, 1888. Bellingham, WA p 454–465Google Scholar
  45. 45.
    Deghani H, Delpy DT (2000) Near-infrared spectrometer of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue. Appl Opt 39:4721–4729ADSCrossRefGoogle Scholar
  46. 46.
    Kienle A, Patterson MS, Dognitz N, Bays R, Wagnieres G, van den Bergh H (1998) Nonivasive determination of the optical properties of two-layer media. Appl Opt 37:779–791ADSCrossRefGoogle Scholar
  47. 47.
    Martelli F, Sassaroli A, Del Bianco S, Zaccanti G (2007) Solution of the time-dependent diffusion equation for a three-layer medium: application to study photon migration through a simplified adult head model. Phys Med Biol 52:2827–2843CrossRefGoogle Scholar
  48. 48.
    Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt 15:0670061-12Google Scholar
  49. 49.
    Karagiannes JL, Zhang Z, Grossweiner B, Grossweiner LI (1989) Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms. Appl Opt 28:2311–2317ADSCrossRefGoogle Scholar
  50. 50.
    Svaasand LO, Ellingsen R (1983) Optical properties of human brain. Photochem Photobiol 38:293–299CrossRefGoogle Scholar
  51. 51.
    Sterenborg HJCM, van Gemert MJC, Kamphorst W, Wolbers JG, Hogervorst W (1989) The spectral dependence of the optical properties of the human brain. Lasers Med Sci 4:221–227CrossRefGoogle Scholar
  52. 52.
    Svaasand LO, Ellingsen R (1985) Optical penetration in human intracranial tumors. Photochem Photobiol 41:73–76CrossRefGoogle Scholar
  53. 53.
    Preuss LE, Bolin FP, Cain BW (1982) Tissue as a medium for laser light transport—implications for photoradiation therapy. In: Berns M (ed) Proc. SPIE 357, lasers in surgery and medicine. Bellingham, WA p 77–84Google Scholar
  54. 54.
    Yavari N, Dam JS, Antonsson J, Wårdell K, Andersson-Engels S (2005) In vitro measurements of optical properties of porcine brain using a novel compact device. Med Biol Eng Comput 43:658–666CrossRefGoogle Scholar
  55. 55.
    Abdo A, Sahin M (2007) NIR light penetration in the rat peripheral nerve and brain cortex. Conf. Proc. IEEE Eng. Med. Biol. Soc. Washington, DC p 17231725Google Scholar
  56. 56.
    Ding H, Nguyen F, Boppart SA, Popescu G (2009) Optical properties of tissues quantified by Fourier-transform light scattering. Opt Lett 34:1372–1374ADSCrossRefGoogle Scholar
  57. 57.
    Matcher SJ, Cope M, Delpy DT (1997) In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy. Appl Opt 36:386–396ADSCrossRefGoogle Scholar
  58. 58.
    Ijichi S, Kusaka T, Isobe K, Okubo K, Kawada K, Namba M, Okada H, Nishida T, Imai T, Itoh S (2005) Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Pediatr Res 58:568–573CrossRefGoogle Scholar
  59. 59.
    Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, Maulik D, Stankovic MR (1999) Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol 44:1543–1563CrossRefGoogle Scholar
  60. 60.
    Sassaroli A, Martelli F, Tanikawa Y, Tanaka K, Araki R, Onodera Y, Yamada Y (2000) Time-resolved measurements of in vivo optical properties of piglet brain. Opt Rev 7:420–425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Health Physics and Diagnostic SciencesUniversity of NevadaLas VegasUSA
  2. 2.Ontario Cancer Institute/University of TorontoTorontoCanada

Personalised recommendations